• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal design of sustainable chemical processes via a combined simulation-optimization approach

Brunet Solé, Robert 19 December 2012 (has links)
Resum La societat es cada dia més conscient de la escassetat i els canvis ambientals. Per això les empreses químiques han d’adaptar i desarrollar processos químics més sostenibles. En aquest sentit, hi ha una clara demanda dins de la comunitat científica per desenvolupar eines sistemàtiques per aconseguir reduccions en els costos de producció i en l’impacte ambiental en els processos químics. Aquesta Tesis introdueix un nou mecanisme pel disseny de processos químics més sostenibles. El sistema que es presenta està basat en l’ús combinat de simulació de processos, eines d’optimització multi-objectiu, anàlisis econòmic, anàlisis de cicle de vida i sistemes de suport a la presa de decisions. L’estratègia presentada s’utilitza en la resolució de problemes complexos, pel que també serà necessari desenvolupar nous algoritmes i estratègies de descomposició per dividir el problema original, en sub-problemes més manejables, per obtindre el disseny òptim del procés. La Tesis es presenta utilitzant sis articles que han estat publicats en revistes científiques. La primera part, que inclou dues publicacions, està enfocada en el disseny de bioprocessos sostenibles, ja que aquests processos han guanyat molt interès al mercat degut al seu alt valor afegit. En el primer treball, s’ha estudiat la maximització del Valor Actual Net en la producció de l’amino-acid L-lisina. El cas es formulat com un problema d’optimització dinàmica entera mixta, i es soluciona mitjançant un mètode de descomposició que itera entre els sub-problemes esclau i el mestre. L’optimització dinàmica del problema esclau es resolta mitjançant un algoritme seqüencial que integra el simulador de procés (SuperPro Designer®) amb un solver de problemes de programació no lineal implementat en Matlab®. En el segon article, el problema d’optimització permet una resolució conjunta dels aspectes econòmics i ambientals del procés. En aquest cas s’optimitza el Valor Actual Net conjuntament amb diversos indicadors ambientals. La solución del problema es presentada mitjançant diverses corbes de Pareto, i en elles s’aplica l’anàlisi de components principals per tal de trobar objectius redundants entre els diversos indicadors ambientals. Degut a que la demanda d’energia s’ha incrementat dràsticament durant els últims anys, l’anàlisi energètic en els processos industrial ha guanyat molt interès. Es per això, que la segona part de la Tesis està enfocada en el disseny òptim de cicles termodinàmics. En aquesta secció s’han publicat dos articles. En el primer dels articles d’aquesta segona part es presenta un mètode per el disseny òptim de cicles d’absorció d’amoni-aigua, tenint en compte l’anàlisi econòmic i ambiental. El problema es planteja com un problema de programació no-lineal entera amb multiples objectius i es resol amb l’estratègia d’aproximació exterior. Al segon article, s’aplica una estratègia similar però incloent diversos cicles termodinàmics. En aquest article es demostren les capacitats del mètode amb diversos cicles termodinàmics, com un cicle Rankine de 10 MW modelat en Aspen Hysys® i un cicle d’absorció d’ammonia-aigua de 90 kW modelat en Aspen Plus®. La producció de biocombustibles segueix creixent a nivell mundial a una gran velocitat. A la tercera part d’aquesta Tesis, hem aplicat tècniques matemàtiques per desenvolupar processos de producció de biocombustibles. Aquesta tercera part inclou novament dos publicacions. En la primera s’adreça el problema de reduir l’impacte ambiental de les plantes de producció de biodiesel mitjançant la inclusió de panells solars per la generació del vapor utilitzat en la planta. Per dur a terme l’estudi s’utilitza un model de sistemes d’energia solar que inclou emmagatzematge d’energia implementat en GAMS®. Aquest model es combinat amb un model de simulació rigorós desenvolupat amb Aspen Plus® de la planta de biodiesel. En el problema el sistema d’energia solar té en compte la minimització del cost i del potencial d'escalfament global de la planta. En el segon treball, el problema adreça el disseny multi-objectiu d’una planta de producció de bio etanol combinada amb un sistema de panels solars per la generació de vapor en la planta. Globalment es pot considerar que la Tesis presenta un nou marc en l’àmbit del disseny òptim de processos sostenibles. Els resultants numèrics mostren que es possible aconseguir millores ambientals i econòmiques utilitzant aquest enfoc rigorós. Addicionalment, aquest mètode ha estat aplicat a diferents tipus de processos com: bioprocesos, cicles termodinàmics i biocombustibles. Aquest mètode serà molt útil per els prenedors de decisions a fi d'avaluar la topologia i les condicions de funcionament en l'enginyeria de procés. / Resumen La sociedad es cada día más consciente de la escasez y los cambios ambientales. Por lo que las empresas químicas tienen la necesidad de adaptarse y desarrollar procesos químicos más sostenibles. Por lo tanto, se ha creado una clara demanda dentro de la comunidad científica para desarrollar herramientas sistemáticas que consigan reducciones en el coste y en el impacto ambiental de los procesos químicos. Esta Tesis introduce un nuevo mecanismo para el diseño de procesos químicos más sostenibles. El sistema que se presenta está basado en el uso combinado de simulación de procesos, herramientas de optimización multi-objetivo, análisis económico, análisis de ciclo de vida y sistemas de soporte a la toma de decisiones. La estrategia presentada se utiliza en la resolución de problemas complejos, por lo que será también necesario desarrollar nuevos algoritmos y estrategias de descomposición para dividir el problema original, en sub-problemas más manejables, para obtener el diseño óptimo del proceso. La Tesis se presenta utilizando seis artículos que se han publicado en revistas científicas. La primera parte, que incluye dos publicaciones, está enfocada en el diseño de bioprocessos sostenibles, ya que han ganado mucho interés en el mercado debido a su alto valor. En el primer trabajo, se ha estudiado la maximización del Valor Actual Neto en la producción del amino-ácido L-lisina. El problema se formula como un problema de optimización dinámica entera mixta, solucionándolo mediante un método de descomposición que itera entre los sub-problemas esclavo y maestro. La optimización dinámica del problema esclavo es resuelta mediante un algoritmo secuencial que integra el simulador de proceso (SuperPro Designer®) con un solver de problemas de programación no lineal implementado en Matlab®. En el segundo artículo, el problema de optimización permite una resolución conjunta de los aspectos económicos y ambientales del proceso. En este caso se optimiza el Valor Actual Neto conjuntamente con diferentes indicadores ambientales. La solución del problema se presenta mediante diferentes curvas de Pareto, a las que se aplica el análisis de componentes principales. Debido a que la demanda de energía a incrementado drásticamente durante los últimos años, el análisis energético en los procesos industriales ha ganado mucho interés. Es por eso que en la segunda parte de la Tesis nos enfocamos en el diseño óptimo de ciclos termodinámicos. En esta sección se han publicado dos artículos. En el primero de esta segunda parte se presenta un método para el diseño óptimo de ciclos de absorción de amoníaco-agua, teniendo en cuenta el análisis económico y ambiental. El caso se plantea como un problema de programación no-lineal entera con múltiples objetivos. En el segundo, se aplica una estrategia similar al primero pero a diversos ciclos termodinámicos. En este trabajo se demuestran las capacidades del método con diversos ciclos termodinámicos. Entre ellos un ciclo Rankine de 10 MW simulado en Aspen Hysys® y un ciclo de absorción de amoníaco-agua de 90 kW simulado en Aspen Plus®. La producción de biocombustibles sigue creciendo a nivel mundial a una gran velocidad. En la tercera parte de la Tesis, hemos aplicado herramientas matemáticas a desarrollar procesos de producción de biocombustibles. Esta tercera parte incluye nuevamente dos publicaciones. En el primer trabajo el problema es reducir el impacto ambiental de las plantas de producción de biodiesel mediante la inclusión de paneles solares para la generación del vapor utilizado en dicha planta. Para realizar este estudio se utiliza un modelo de sistemas de energía solar en GAMS®. Este modelo se combina con un modelo de simulación riguroso en Aspen Plus® de la planta de biodiesel. En el problema el sistema de energía solar tiene en cuenta la minimización del coste y del potencial de calentamiento global. En el segundo trabajo, el problema es el diseño multi-objectivo de una planta de producción de bioetanol combinada con un sistema de paneles solares para la generación de vapor en la planta. En general, se puede considerar que la Tesis presenta un marco interesante en el ámbito del diseño optimo de procesos sostenibles. Los resultados numéricos muestran cómo es posible conseguir mejoras ambientales y económicas utilizando estos modelos rigurosos. Además, este método ha sido aplicado a diferentes tipos de procesos como: los bioprocesos, los ciclos termodinámicos y los biocombustibles. Este método será muy útil para los tomadores de decisiones a fin de evaluar la topología y las condiciones de funcionamiento en la ingeniería de proceso. / The society is every day more conscious about the scarce of resources, the global economy, and the environmental changes. Hence, chemical companies have the necessity to be adapted and develop more sustainable processes. There is a clear demanding to the scientific community to develop systematic tools to achieve reductions in the production costs as well as the associated environmental impact in order to develop decision support tools for the design of chemical plants. This thesis introduces a novel framework for the optimal design of sustainable chemical processes. Our approach combines process simulation, multi-objective optimization tools (MOO), economic analysis, life cycle assessment (LCA) and decision support systems (DSS). The developed strategy will be used to solve very complex problems. For that it will be necessary to develop new algorithms and decomposition strategies to divide the original problem in more manageable sub-problems, to obtain the optimum design of the process. The capabilities of the methodology have been tested in different processes along the Ph.D Thesis. This PhD dissertation is presented using six articles that have been published in international peer reviewed journals. The first part, which includes two publications, is focused in the development of sustainable bioprocesses, as these processes have recently gained wider interest for their potential to produce high-value products. In the first work, we studied the maximization of the Net Present Value (NPV) in the production of the amino acid L-lysine. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external non-linear programming (NLP) solver implemented in Matlab®, while the task of the master problem is to decide on the value of the integer variables. In the second paper, the optimization allows for the simultaneous consideration of economic and environmental concerns. We optimize in this case the economic (NPV) and different environmental indicators. The solution is given by various bi-objective Pareto sets, and then we applied principal component analysis (PCA) in order to find redundant objective functions between the environmental indicators. Because the energy demand has drastically increased over the last few years, the energetic analysis of industrial processes has gained wider interest. Hence, we focused in the second part of the thesis in the optimal design of thermodynamic cycles. In this section, we published two papers. In the first article of the second part we present a method for the optimal design of ammonia-water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. The design task is posed as multi-objective mixed-integer non-linear programming (MINLP). In the second article, we expand our work to different thermodynamic cycles. We demonstrate the capabilities of the approach with a 10 MW Rankine cycle simulated in Aspen Hysys® and a 90 kW ammonia-water absorption cycle in Aspen Plus®. Biofuels production worldwide is continuing to grow at very rapid pace. Hence, in the third part of the thesis, we applied the techniques developed in different biofuels production processes. This third part includes two publications. In the first work we address the problem of reducing the environmental impact of biodiesel plants through their integration with a solar thermal energy system that generates steam. A mathematical model of the solar energy system that includes energy storage is programmed and coupled with a rigorous simulation model of the biodiesel facility developed in Aspen Plus®. The solar energy system accounts for the simultaneous minimization of cost and global warming potential. In the second work, we address MOO of a corn-based bioethanol plant coupled with solar assisted steam generation system with heat storage. Our approach relies on the combined use of process simulation, rigorous optimization tools and, economic and energetic plant analysis. Overall, we can consider that this thesis presents a promising framework for the optimal design of sustainable chemical processes. Numerical results show that it is possible to achieve environmental and cost saving using this rigorous approach. Additionally, this approach has been applied in very different type of processes, such as: bioprocesses, thermodynamic cycles and biofuels. This methodology will be very useful for decision-makers in order to evaluate the topology and operating conditions in process system engineering

Page generated in 0.0956 seconds