• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 3
  • Tagged with
  • 44
  • 44
  • 44
  • 33
  • 33
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation of pre-fermentation using confectionery waste products for two-stage anaerobic digestion

Magnusson, Björn January 2010 (has links)
The finite amount of energy carriers affects all of us. It is important to utilize all available sources and to find new sources of energy. The confectionery industry generates both solid and liquid waste during the production of confectioneries, which could be utilized as a substrate for biogas production. However, problems might arise during the biogas process since these kinds of waste are very rich in carbohydrates. The initial breakdown of the substrate would probably cause an accumulation of fermentation products such as volatile fatty acids (VFA) and a low pH. A solution to this might be to use a two-stage process. The first stage would be a pre-fermentation that should be optimized for production of fermentation products such as ethanol and VFA. The aim of this master thesis is to evaluate the biogas potential of confectionery waste products. The confectionery waste products are evaluated using a continuous two-stage process, batch experiments and theoretical calculations of the methane potential. The potential from process wastewater was examined. Depending on COD reduction for a reactor and COD content of process wastewater, an annual amount of 75 000 m3 or of 857 000 m3 of process wastewater is necessary to produce enough biogas for a gas engine to continuously convert the biogas to electricity. A batch experiment evaluating the methane production potential of nine different confectionery waste products from a large confectionery industry gave a range of 430 - 690 NmL/g VS, which is relatively high. A continuous experiment in two lab-scale reactors with a HRT of two days worked satisfactory. The gas production was stable periodically with a carbon dioxide content above 60%. The pH was low (3.4 - 3.6) throughout the experiment for one of the reactors. However, addition of digester sludge from a methane-producing reactor towards the end of the experiment resulted in a higher pH and more VFA available for utilization in the second stage. The main fermentation products were: acetic acid, lactic acid, ethanol and carbon dioxide. A second batch experiment showed that the methane potential was not affected by pre-fermentation. A carbon balance calculation of the process indicates that 57% of the ingoing organic matter is fermented within only two days and ends up in the known fermentation products. The study shows that confectionery waste products are well suited for two-stage anaerobic digestion. / Den ändliga mängden av energibärare påverkar oss alla. Det är därför viktigt att utnyttja alla tillgängliga men även att finna nya energibärare. Konfektyrindustrin generar restprodukter (avfall) både i fast och flytande form, vilka båda kan utnyttjas för produktion av biogas. Det kan dock uppstå problem i biogasprocessen eftersom dessa innehåller en stor mängd kolhydrater. Den initiala nedbrytningen kan ge upphov till en ackumulering av VFA och ett lågt pH. En lösning på detta problem kan vara att använda en två-stegs process. Första steget är en för-fermentering, som ska optimeras för att producera fermentationsprodukter så som etanol och VFA. Syftet med detta arbete är att utvärdera biogaspotentialen från konfektyrrestprodukter genom att använda en kontinuerlig två-stegs process, batchförsök och teoretiska beräkningar av metanpotentialen. Potentialen undersöktes från processvatten. Beroende på COD reduktion i en reaktor och COD innehåll i processvatten, är en årlig mängd av 75 000 m3 eller av 857 000 m3 processvatten nödvändig för att producera en tillräcklig mängd biogas så att en gasmotor kontinuerligt kan omvandla biogasen till elektricitet. Ett batchförsök med nio olika restprodukter från en storskalig konfektyrproducent visade en relativt hög metanpotential (430 - 690 NmL/g VS). Ett kontinuerligt reaktorexperiment genomfördes i laboratorieskala med två reaktorer, där uppehållstiden var två dagar. De två för-fermenteringsreaktorerna presterade tillfredsställande. Gasproduktionen var periodvis stabil med en koldioxidhalt över 60%. pH var lågt (3,4 och 3,6) genom hela experimentet för en av reaktorerna. För den andra reaktorn gjordes tillsatser av reaktormaterial från en metanproducerande reaktor i slutet av experimentet. Dessa tillsatser ökade pH och totalmängden av VFA, som kan utnyttjas i det andra steget. Huvudfermentationsprodukterna är acetat, laktat, etanol och koldioxid. Ytterligare batchförsök visade att för-fermentation inte verkar påverka metanpotentialen för konfektyrrestprodukter. En kolbalans av processen indikerar att 57% av ingående kol återfinns i de kända fermentationsprodukterna inom två dagar. Studiens resultat visar att avfallsprodukter från konfektyrindustrin lämpar sig väl för två-stegs anaerob rötning.
22

Densities and viscosities of slags : modeling and experimental investigations

Persson, Mikael January 2006 (has links)
<p>The present dissertation describes part of the efforts directed towards the development of computational tools to support process modeling. This work is also a further development of the Thermoslag software developed in the Division of Materials Process Science, KTH.</p><p>The essential parts of the thesis are</p><p>a) development of a semi-empirical model for the estimation of the molar volumes/densities of multicomponent slags with a view to incorporate the same in the model for viscosities and</p><p>b) further development of the viscosity model for application towards fluorid- containing slags, as for example, mould flux slags.</p><p>The model for the estimation of molar volume is based on a correlation between the relative integral molar volume of a slag system and the relative integral molar enthalpies of mixing of the same system. The integral molar enthalpies of the relevant systems could be evaluated from the Gibbs energy data available in the Thermoslag software. The binary parameters were evaluated from experimental measurements of the molar volumes. Satisfactory correlations were obtained in the case of the binary silicate and aluminate systems. The model was extended to ternary and multi component systems by computing the molar volumes using the binary parameters. The model predictions showed agreements with the molar volume data available in literature. The model was used to estimate the molar volumes of industrial slags as well as to trace the trends in molar volume due to compositional variations. The advantage of the present approach is that it would enable prediction of molar volumes of slags that are compatible with the thermodynamic data available.</p><p>With a view to extend the existing model for viscosities to F--containing slags, the viscosities of mould flux slags for continues casting in steel production have been investigated in the present work. The measurements were carried out utilizing the rotating cylinder method. Seven mould fluxes used in the Swedish steel industry and the impact of Al<sub>2</sub>O<sub>3 </sub>pick up by mould flux slags on viscosities were included in the study. The results showed that even relatively small additions of Al<sub>2</sub>O<sub>3</sub> are related with a significant increase in viscosity</p>
23

Effect of swriling blade on flow pattern in nozzle for up-hill teeming

Hallgren, Line January 2006 (has links)
<p>The fluid flow in the mold during up-hill teeming is of great importance for the quality of the cast ingot and therefore the quality of the final steel products. At the early stage of the filling of an up-hill teeming mold, liquid steel enters, with high velocity, from the runner into the mold and the turbulence on the meniscus could lead to entrainment of mold flux. The entrained mold flux might subsequently end up as defects in the final product. It is therefore very important to get a mild and stable inlet flow in the entrance region of the mold. It has been acknowledged recently that swirling motion induced using a helix shaped swirl blade, in the submerged entry nozzle is remarkably effective to control the fluid flow pattern in both the slab and billet type continuous casting molds. This result in increased productivity and quality of the produced steel. Due to the result with continuous casting there is reason to investigate the swirling effect for up-hill teeming, a casting method with similar problem with turbulence.</p><p>With this thesis we will study the effect of swirling flow generated through a swirl blade inserted into the entry nozzle, as a new method of reducing the deformation of the rising surface and the unevenness of the flow during filling of the up-hill teeming mold. The swirling blade has two features: (1) to generate a swirling flow in the entrance nozzle and (2) to suppress the uneven flow, generated/developed after flowing through the elbow. The effect of the use of a helix shaped swirl blade was studied using both numerical calculations and physical modelling. Water modelling was used to assert the effect of the swirling blade on rectifying of tangential and axial velocities in the filling tube for the up-hill teeming and also to verify the results from the numerical calculations. The effect of swirl in combination with diverged nozzle was also investigated in a similar way, i. e. with water model trials and numerical calculations.</p>
24

Influence of microstructure on fatigue and ductility properties of tool steels

Randelius, Mats January 2008 (has links)
<p>Fatigue and ductility properties in various tool steels, produced by powder metallurgy, spray forming or conventionally ingot casting, have been analysed experimentally and successfully compared to developed models. The models are able to predict the fatigue limit and cause for fatigue fracture, and strain- and stress-development until fracture during the ductile fracture process respectively. Total fracture in a tool steel component, both in fatigue and ductility testing, is caused by a propagating crack initiated by particles, i.e. carbides or non-metallic inclusions. The models are based on experimentally observed size distributions.</p><p>The axial fatigue strength at two million cycles was determined for various tool steels. The fracture surface of each test bar broken was examined in SEM to determine the cause for fatigue failure, i.e. a single carbide or inclusion particle or a cluster of carbides, and the size of the particle. The particles act as stress concentrators where a crack is easily initiated when the material is subjected to alternating stresses. The developed models calculate the probability that at least one particle will be present in the material which is larger than the threshold level for crack initiation at a certain stress range.</p><p>The ductility testing was performed on various tool steels by four-point bending under static load. The load and displacement until total fracture were recorded and the maximum strain and stress acting in the material were calculated. The fracture surface of each broken test bar was examined in SEM, though the crack initiating area appears different compared to a fatigue failure. Ductile fracture is caused by a crack emanating from voids nucleated around many particles in a joint process and then linked together. By finite element modelling of void initiation and propagation in 2D of an experimentally observed carbide microstructure for each tool steel, successful comparisons with experiments were performed. Carbides were modelled as cracked when larger than a certain size, based on fracture surface observations, and the matrix cracked above a pre-defined plastic deformation level. The stresses and strains at total failure were in good agreement between model and experiments when evaluated.</p><p>The use of these developed models could be a powerful tool for optimisation of fatigue and ductility properties for tool steels. With good fatigue and ductility properties normal failures appearing during operation of a tool steel product could be minimised. By theoretical tests in the developed models of various carbide microstructures the optimum mechanical properties could be achieved with a minimum of experiments performed.</p>
25

Measurements of the thermodynamic activities of chromium  and vanadium oxides in CaO-MgO-Al2O3-SiO2 slags

Dong, Pengli January 2009 (has links)
<p>In the present work, the thermodynamic activities of chromium and vanadium oxide in CaO-SiO2-MgO-Al2O3 slags were measured using gas-slag equilibration technique. The slag was equilibrated with a gas mixture of CO, CO2 and Ar gases enabling well-defined oxygen partial pressures in the gas mixture (PO2=10-3,10-4,10-5 Pa) at temperatures 1803, 1823K, 1873, 1923 K. The slags were kept in Pt crucibles during the equilibration and the duration of which was 20 h. From a knowledge of the thermodynamic activity of chromium and vanadium in Cr or V in Pt alloy, obtained from literature, and the oxygen partial pressure in the gas stream calculated by Thermo Calc software, the thermodynamic activity of chromium, vanadium oxide in the slags could be observed.An assessment of the experimental studies in earlier works reveal that, the activities of chromium at low chromium contents and vanadium in their respective alloys in platinum exhibits a strong negative deviation from ideality, the logarithms of activity coefficient of these elements were found to increase with increasing mole fractions of these metals in the Pt-alloys.Regarding the slag phase, all the chromium in the slags was assumed to be present in the divalent state in view of the low Cr contents and the low oxygen potentials employed in the present studies. Analogously, vanadium in the slag was assumed to be in the trivalent state in view of the low vanadium contents in the slag and the low oxygen partial pressure in the gas phase. Activity of chromium oxide, CrO decreases with increasing temperature and decreasing content of chromium oxide in slag and oxygen partial pressure in the gas phase. Activity of vanadium oxide, VO1.5 in slag phase shows a negative deviation from ideality. Activity coefficient of vanadium oxide shows a decrease with basicity of slag and the “break point” occurs at about slag basicity of 1 under the oxygen partial pressure of 10-3 Pa and temperature of 1873 K.A relationship for estimating the actual content of chromium, vanadium in slag as a function of activities of chromium or vanadium, temperature, oxygen partial pressure and slag basicity were developed from the present results, the agreement between the estimated and experimental values is satisfactory, especially at lower oxygen partial pressure.</p>
26

A study of flow fields during filling of a sampler

Zhang, Zhi January 2009 (has links)
<p>More and more attention has been paid to decreasing the number and size of non-metallic inclusions existing in the final products recently in steel industries. Therefore, more efforts have been made to monitor the inclusions' size distributions during the metallurgy process, especially at the secondary steelmaking period. A liquid sampling procedure is one of the commonly applied methods that monitoring the inclusion size distribution in ladles, for example, during the secondary steelmaking. Here, a crucial point is that the steel sampler should be filled and solidified without changing the inclusion characteristics that exist at steel making temperatures. In order to preserve the original size and distributions in the extracted samples, it is important to avoid their collisions and coagulations inside samplers during filling. Therefore, one of the first steps to investigate is the flow pattern inside samplers during filling in order to obtain a more in-depth knowledge of the sampling process to make sure that the influence is minimized.</p><p>The main objective of this work is to fundamentally study the above mentioned sampler filling process. A production sampler employed in the industries has been scaled-up according to the similarity of Froude Number in the experimental study. A Particle Image Velocimetry (PIV) was used to capture the flow field and calculate the velocity vectors during the entire experiment. Also, a mathematical model has been developed to have an in-depth investigate of the flow pattern in side the sampler during its filling. Two different turbulence models were applied in the numerical study, the realizable k-ε model and Wilcox k-ω model. The predictions were compared to experimental results obtained by the PIV measurements. Furthermore, it was illustrated that there is a fairly good agreement between the measurements obtained by PIV and calculations predicted by the Wilcox k-ω model. Thus, it is concluded that the Wilcox k-ω model can be used in the future to predict the filling of steel samplers.</p>
27

Physical properties and crystallization of theophylline co-crystals

Zhang, Shuo January 2010 (has links)
<p>This work focuses on the physical properties and crystallization of theophyline co-crystals. Co-crystals of theophylline with oxalic acid, glutaric acid and maleic acid have been investigated.</p><p>The DSC curves of these co-crystals show that their first endothermic peaks are all lower than the melting temperature of theophylline. The decomposition temperature of theophylline – oxalic acid co-crystal is at about 230 °C, determined by DSC together with TGA. After decomposition, the remaining theophylline melts at about 279 °C, which is higher than the known melting temperature of theophylline, suggesting a structure difference, ie. a new polymorph may have been formed. The formation of hydrogen bonds in theophylline – oxalic acid co-crystal was investigated by FTIR. Changes of FTIR peaks around 3120 cm<sup>-1</sup> reflects the hydrogen bond of basic N of theophylline and hydroxyl H of oxalic acid. The solubility of theophylline – oxalic acid co-crystal and theophylline – glutaric acid co-crystal was determined in 4:1 chlroform – methanol and in pure chloroform respectively. At equilibrium with the solid theophylline – oxalic acid co-crystal, the theophylline concentration is only 60 % of the corresponding value for the pure solid theophylline. At equilibrium with the solid theophylline – glutaric acid co-crystal, the theophylline concentration is at least 5 times higher than the corresponding value for the pure solid theophylline. Two phases of theophylline were found during the solubility determination. In the chloroform – methanol mixture (4:1 in volume ratio) the solubility of the stable polymorph of theophylline is found to be about 14 % lower than that of the metastable phase. Various aspects of the phase diagram of theophylline – oxalic acid co-crystal was explored.</p><p>Theophylline – oxalic acid co-crystal has been successfully prepared via primary nucleation from a stoichiometric solution mixture of the two components in chloroform – methanol mixture. By slurry conversion crystallization, the co-crystal can be prepared in several solvents, and yield and productivity can be significantly increased. Theophylline – glutaric acid can be successfully prepared via both co-grinding of the two components and slow evaporation with seeding.</p> / QC20100608
28

Control of Alloy Composition and Evaluation of Macro Inclusions during Alloy Making

Kanbe, Yuichi January 2010 (has links)
In order to obtain a good performance and predict the properties of alloys, it is necessary to control the contents of alloying elements and to evaluate a largest inclusion in the product. Thus, improved techniques for both control of alloy elements and evaluation of the large inclusion in products will enable us to provide better qualities of the final products. In the case of one Ni alloy, (NW2201, &gt;99 mass%Ni), the precise control technique of Mg content is important to obtain a good hot-workability. Hereby, the slag/metal reaction experiments in a laboratory have been carried out at 1873 K, so that the equilibrium Mg content and kinetic behavior can be understood. More addition of Al in the melt as well as higher CaO/Al2O3 value of slag resulted in higher amount of Mg content in Ni. For the same conditions of Al content and slag composition, the mass transfer coefficient of Mg in molten Ni was determined as 0.0175 cm/s. By applying several countermeasures regarding the equilibrium and kinetic process to the plant trials, the value of the standard deviation for the Mg content in an alloy was decreased till 0.003 from 0.007 mass%. The size measurements of largest inclusions in the various alloys (an Fe-10mass%Ni alloy, 17CrMo4 of low-C steel and 304 stainless steel) were carried out by using statistics of extreme values (SEV). In order to improve the prediction accuracy of this method, three dimensional (3D) observations were applied after electrolytic extraction. In addition, the relationship of extreme value distribution (EVD) in the different stages of the production processes was studied. This was done to predict the largest inclusion in the products at an early stage of the process. A comparison of EVDs for single Al2O3 inclusion particles obtained by 2D and 3D observations has clarified that 3D observations result in more accurate EVD because of the absence of pores. Also, it was found that EVD of clusters were larger than that of single particles. In addition, when applying SEV to sulfide inclusions with various morphologies, especially for elongated sulfides, the real maximum sizes of them were able to be measured by 3D observations. Geometrical considerations of these particles clarified the possibility of an appearance of the real maximum inclusion sizes on a cross section to be low. The EVDs of deoxidation products in 304 stainless steel showed good agreement between the molten steel and slab samples of the same heat. Furthermore, the EVD of fractured inclusion lengths in the rolled steel were estimated from the initial sizes of undeformed inclusions which were equivalent with fragmented inclusions. On the other hand, from the viewpoint of inclusion width, EVD obtained from perpendicular cross section of strips was found to be useful to predict the largest inclusion in the final product with less time consumption compared to a slab sample. In summary, it can be concluded that the improvement of the techniques by this study has enabled to precisely control of alloy compositions as well as to evaluate the largest inclusion size in them more accurately and at an earlier stage of the production process. / QC 20101222
29

Liquid phase sintering of W-Ni-Fe composites : liquid penetration, agglomerate separation and tungsten particle growth

Eliasson, Anders January 2006 (has links)
The initial stage of liquid phase sintering, involving liquid penetration, agglomerate separation, particle spreading and growth has been investigated in experiments using tungsten heavy alloys. The particle composites used were produced by hot isostatic pressing (HIP) of pure powder mixtures of W-Ni-Fe-(Co). By using different HIP temperatures, volume fractions of tungsten, alloying elements like Cobalt and Sulphur or excluding Iron from the matrix, liquid penetration, agglomerate separation and particle growth conditions were affected. The investigations were performed mainly under microgravity (sounding rockets or parabolic trajectories by airplanes) but at high tungsten particle fractions, short sintering times or at infiltration of solid pure tungsten, they were performed at normal gravity. The liquid penetration of the tungsten agglomerates is explained by initial wetting under non-equilibrium conditions, due to the reaction between the liquid matrix and the particles, and a decrease of interfacial energy. The dissolving of tungsten gives a pressure drop in the penetrating liquid and a driving force for the liquid movement by a suggested parabolic penetration model. For cold worked tungsten, a penetration theory was proposed, where an internal stress release in the penetrated tungsten grains creates space for the advancing liquid. The spreading of the tungsten agglomerates is explained by an interagglomerate melt swelling due to a Kirkendall effect. The liquid matrix undergoes a volume increase since the diffusion rates of Ni-Fe are higher than for W and initial concentration gradients of W and Ni, Fe exists. The suggested model by Kirkendall are also used for an analysis of the interaction behaviour between solid particles and a solidification front and inclusion behaviour in iron base alloys during teeming and deoxidation. The average tungsten particles size decrease initially since part of the tungsten particles is dissolved when the non-equilibrium matrix phase is melting. When equilibrium is reached, the tungsten particles grow in accordance with the Ostwald ripening process by an approximately 1/3 power law. Larger particle fraction of particles showed a higher growth rate, due to shorter diffusion distances between the particles. Cobalt, Sulphur and absence of iron in the matrix were found to increase the growth rate of the tungsten particles due to a higher surface tension between the solid tungsten particles and the matrix melt. / QC 20100528
30

Some aspects of non-metallic inclusions during vacuum degassing in ladle treatment : with emphasize on liquid CaO-Al2O3 inclusions

Kang, Young Jo January 2007 (has links)
The present thesis was to study non-metallic inclusions during vacuum degassing in ladle treatment. Emphasize was mostly given to liquid CaO-Al2O3 inclusions. A series of industrial experiments were carried out at Uddeholm Tooling AB, Hagfors, Sweden. To gain an insight into the industrial findings, laboratory investigations were also performed. Large number of steel samples were collected and examined. Liquid calcium aluminate inclusions with low SiO2 and high SiO2 were often found with spinel inclusions before vacuum degassing. Laboratory experiments showed that spinel would react with the dissolved Ca in the liquid steel forming calcium aluminate inclusions. This laboratory results agreed with the industrial observation that spinel phase was quite often found in the center of the calcium aluminate phase. After vacuum degassing, most of the inclusions were calcium aluminate liquid inclusions. When dissolved Al level was low, 2 types of liquid calcium aluminate inclusions with considerably different SiO2 contents were found to coexist even at the end of the process. In view of the lack of the thermodynamic data for SiO2 activities in the low silica region, thermodynamic measurements were conducted in the CaO-Al2O3-SiO2-MgO system. The experimental results could reasonably explain the coexistence of the two types of the liquid oxide inclusions. While the total number of inclusions decreased during vacuum degassing, the number of bigger inclusions (&gt;11.3 μm) increased generally in used ladles. This finding was in accordance with the previous studies, wherein, ladle glaze was found to be responsible for the supply of bigger inclusions. The behaviors of several types of inclusions in liquid steel were examined using a laser scanning confocal microscope (LSCM). While alumina inclusions tended to impact on each other, agglomerate and grow very quickly, none of the other types of inclusions, such as spinel and calcium aluminate was observed to agglomerate. The results of LSCM study agreed well with the industrial observation. Examination on a huge number of inclusions did not show any indication of impact and physical growth of the inclusions, except the alumina inclusions. The removal of inclusions around open-eye in a gas-stirred ladle was experimentally studied by a cold model with oil and water. Most of the simulated inclusions were brought up to the oil phase by gas-water plume. Inclusion removal into oil layer took place when the inclusions passed through the sphere-bed of the oil layer around the open-eye. A calculation showed that the contribution of metal-gas plume in inclusion removal was much larger than that of buoyancy mechanism. The results of the industrial experiments revealed that the inclusions distribution strongly depended on stirring condition. When a ladle was stirred by both gas and induction, inclusion removal near slag layer was significant. / QC 20100803

Page generated in 0.0463 seconds