• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et simulation numérique des écoulements diphasiques

Seguin, Nicolas 22 November 2002 (has links) (PDF)
On s'intéresse dans ce travail à la simulation des écoulements diphasiques. Différents modèles, tous hyperboliques, sont considérés suivant les configurations étudiées. Dans un premier temps, plusieurs schémas Volumes Finis sont comparés pour l'approximation du modèle HEM (Homogeneous Equilibrium Model), notamment en présence de faibles densités. Ensuite on démontre l'existence et l'unicité de la solution faible entropique d'une loi de conservation scalaire gouvernant l'évolution de la saturation d'un écoulement diphasique dans un milieu poreux. On propose alors deux schémas Volumes Finis tenant compte du caractère résonnant de cette équation. La troisième partie concerne les écoulements en eaux peu profondes et l'approximation des termes sources raides. Une méthode permettant le maintien d'états au repos ainsi que le recouvrement et l'apparition de zones sèches, est présentée et comparée aux méthodes habituellement utilisées dans l'industrie. Enfin, une classe de modèles hyperboliques non conservatifs se basant sur l'approche bifluide à deux vitesses et deux pressions est proposée. Une étude des solutions discontinues du système convectif permet d'exhiber une classe de fermetures sur la vitesse interfaciale et sur la pression interfaciale, tout en permettant de définir de manière unique les produits non conservatifs. L'approximation se fait à l'aide d'une méthode de splitting d'opérateur. On utilise deux schémas Volumes Finis, le schéma de Rusanov et le schéma de Godunov approché VFRoe-ncv pour l'étape de convection. Plusieurs cas tests sont présentés et commentés : tubes à choc, conditions limites de paroi, robinet d'eau, sédimentation.
2

Problèmes d’interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique / Problèmes d’interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique

Aguillon, Nina 29 September 2014 (has links)
Dans ce travail, nous nous intéressons à deux problèmes de la théorie des systèmes hyperboliques faisant intervenir des interfaces. Le premier concerne des modèles de couplages entre un fluide compressible et une particule ponctuelle et le second concerne la capture numérique précise des chocs, ces discontinuités qui apparaissent dans les solutions des systèmes hyperboliques.Sur la première thématique, nous commençons par introduire les différents modèles, dans lesquels la particule et le fluide interagissent à travers une force de frottement qui tend à rapprocher leurs vitesses. Le couplage est singulier car il fait intervenir le produit d’une fonction discontinue par une mesure de Dirac. On peut toutefois définir précisément le système en voyant la particule comme une interface à travers laquelle des relations liant les propriétés du fluide et celle de la particule sont imposées. Lorsque le fluide suit une équation de Burgers, nous démontrons la convergence d’une classe de schéma numérique, et nous obtenons l’existence d’une solution au problème de Cauchy pour une donnée initiale à variation totale bornée. Dans le cas plus complexe où le fluide est décrit par les équa- tions d’Euler isothermes, on prouve l’existence et l’unicité d’une solution autosemblable au problème de Riemann lorsque la particule est immobile. Des simulations numériques sont également présentées.La dernière partie de la thèse est consacrée à la construction de schémas non diffusifs pour les systèmes hyperboliques. Ces schémas, de type volumes finis, sont construits pour être exact lorsque la donnée initiale est un choc isolé. Ils sont basé sur une reconstruction discontinue de la solution au début de chaque itération en temps, dans le but de reconstituer des chocs à l’intérieur de certaines cellules du maillage. Cette stratégie mène à des schémas très peu diffusifs qui, lorsque l’opérateur de reconstruction est bien choisi, approchent correctement les solutions de cas tests problématiques (chocs lents, chocs forts, réflexions pour la dynamique des gaz, chocs non classiques pour les systèmes qui ne sont pas vraiment non linéaires). / In this work, we study two problems concerning hyperbolic systems involving interfaces. The first one concerns the study of models of coupling between a compressible fluid and a pointwise particle. The second one deals with the sharp numerical approximation of shocks, which are discontinuities that appear in the solutions of hyperbolic systems.In the first two parts of the manuscript, we introduce different models of fluid-particle couplings. The fluid and the particle interact on each other through a drag force, which brings their velocities closer to one another. The coupling is singular because it can be written as the product of a discontinuous function by a Dirac measure. However, the system can be precisely defined as follows. The particle is seen as an interface through which interface conditions linking the properties of the fluid with those of the particle are imposed. When the fluid follows the compressible Burgers equations, we prove the convergence of a family of finite volume schemes and obtain the existence of a solution when the initial data has total bounded variation. In the more difficult case where the fluid is described by the isothermal Euler equations, we prove the existence and uniqueness of a selfsimilar solution to the Riemann problem, when the particle is motionless. Numerical experiments are also presented.In the last part of this work, we build non diffusive numerical schemes for different hyperbolic systems. These finite volume schemes are built to be exact when the initial data is an isolated shock. They are based on a discontinuous reconstruction of the solution at the beginning of each time step, in order to reconstruct shocks inside some specific cells of the mesh. The schemes we present have a very low numerical diffusion and, when the reconstruction operator is well chosen, they are able to correctly approximate the solution on various problematic test cases. These cases include slowly moving shocks, strong shocks and shock reflections for gas dynamics, as well as the apparition of nonclassical shocks for systems that are not truely nonlinear.
3

Modélisation de la morphodynamique sédimentaire par une méthode distribuant le résidu / Numérical modeling of the sediment transport by aésidual Distribution method.

Ramsamy, Priscilla 07 December 2017 (has links)
Ce travail de thèse, propose un schéma numérique d'ordre élevé, distribuantle résidu (RD) pour l'approximation d'un problème hydro-sédimentairehyperbolique non conservatif, couplant les modèles de Grass et de Saint-Venant. Il fait appel à des méthodes de Runge-Kutta à variation totale diminuanteet de stabilisation (méthode de décentrement amont, dit Upwind),avec ou sans adjonction de limiteurs et présente de bonnes propriétés.L'une des facettes importantes de ce qui a été réalisée, repose sur la conceptionet le développement d'un programme Python 2D-espace, sous la formed'un logiciel faisant appel à un ensemble de modules créés pour l'occasion.Le développement du code de calcul, qui se propose d'approcher la solutiondu problème hydro-sédimentaire, a été e_ectué avec une orientation Objetet pour être e_cace sur calculateur parallèle (utilisant le parallélisme multithreadsOpenMP). L'une des particularités du schéma numérique dans cecadre, est liée à son application à des quadrangles.Un programme 1D-espace, qui se présente également sous forme de logiciel,a aussi été mis en place. Pour des raisons de portabilité et d'e_catité, il aété écrit multilangages (Python-Fortran : via numpy.ctypes pour Python etvia l'interface standard de Fortran pour C). Le schéma RD avec ou sansadjonction de limiteurs de _ux, a été implémenté à la manière d'un schémaprédicteur-correcteur. Des comparaisons avec d'autres schémas ont été e_ectuées a_n de montrer son e_cacité, son ordre de précision élevé a été mis enévidence, et la C-propriété a été testée. Les tests ont révélé que, pour le casd'un transport d'un pro_l sédimentaire parabolique, c'est le limiteur de _uxMUSCL MinMod, qui est le plus adapté parmi ceux testés.Dans le cas scalaire, des tests numériques ont été réalisés a_n de validerle second ordre de précision. / The present work, proposes a high order Residual Distribution (RD) numericalscheme to solve the non conservative hyperbolic problem, coupling Shallow Water and Grass equations. It uses Total Value Diminishing Runge Kutta and stabilisation Upwind methods, with or without limiters. It also has some good properties.A part of the work realised in this thesis, is about the conception and the developpement of a 2D-space Python program, under the form of a software,using a set of moduls created for the occasion. the code developpement, whichis said to approach the _uid-sediment model, coupling Shallow-Water and sedimentequations, has been made with an Object orientation and in orderto be e_cient on parallel architecture (using multithreads OpenMP parallelism). One of the features of the scheme in this case, is due to its application on quadrangles.A 1D-space program, also writen as a software, has been estabished. In order to be portable and e_cient, It has been developped multilinguals (Python- Fortran : by numpy.ctypes for Python and by standart interface FORTRAN for C). The RD scheme with or without Flux Limiters, has been implemented like predictor-corrector one. Comparisons with other schemes results have been realised, in order to show its e_ciency, moreover its high order accuracy has been focus on, and the C-proprerty has been tested. The tests show that MUSCL MinMod _ux limiters, is the most adaptated for a dune test case, between all tested.In the scalar case, numerical tests have been realised, for validating the secondorder of accuracy.

Page generated in 0.1216 seconds