71 |
Alocação de recursos em nível operacional com incerteza nos dados / Sistema de alocação de recursos de transporte com a presença de incerteza nos dadosLima, Matheus Garibalde Soares de 31 May 2012 (has links)
O estudo tem como finalidade tratar a alocação de recursos no nível operacional com a presença de incertezas. Para isso, foi proposta uma abordagem de otimização usando métodos heurísticos. As soluções de problemas de produção e logística, comumente abordadas em pesquisa operacional, exploram diversos parâmetros dentre os quais o presente estudo considera três como de incerteza: demanda, tempo de execução e indisponibilidade de recursos. Para tal finalidade foi escolhido como estudo de caso a resolução de um problema de logística. O problema consiste na minimização dos custos de operação, na seleção de veículos em uma frota heterogênea, consolidação das cargas para cada cliente e na seleção do tipo de frete utilizado. Quanto ao tipo de frete, são considerados dois, os quais se diferenciam quanto aos ativos envolvidos na produção e ao tipo de prestação de serviço, sendo eles: i) frota da empresa com serviço terceirizado; ii) frota e serviços totalmente terceirizados. O problema original foi decomposto em duas etapas: i) Compartimentalizador e ii) Alocador. As duas etapas são solucionadas via a abordagem de Busca Tabu, sendo que a primeira etapa (Compartimentalizador) gera uma lista dos carregamentos factíveis que atenda pedidos de até três clientes distintos. O Alocador se utiliza da lista dos carregamentos factíveis para definir como e quando cada pedido será atendido. Os resultados indicam a viabilidade da adoção desta abordagem para a solução de problemas reais. / The study aims to address the allocation of resources at the operational level under uncertainties. For this reason, it was proposed an optimization approach based on heuristic methods. The resolutions of production and logistics problems, commonly addressed in operational research, explore various parameters among which the present study considers three variables of uncertainty: demand, operation time and resources availability. For this purpose a logistics problem was chosen as study of case. The problem consists in minimizing cost operation, selection of vehicles in a heterogeneous fleet, consolidation of loads for each client and selecting the type of freight payables. Regarding of freight payables types, there are centered in two different tariffs, mainly due to assets and service negotiation, such as: i) fleet controlled by company and service outsource; ii) fleet and service completely outsource. The resolution of the original problem was broke down in two steps: i) Compartmentalizer and ii) Allocator. Both steps are solved through Tabu Search approach; the first step (Compartmentalizer) generates a list of feasible shipments to fulfill orders up to three different customers. The second step, the allocator uses the list of feasible shipments to define how and when each request will be supplied. The results aim the feasibility of assumes this approach in order to solve real problems.
|
72 |
Alocação de recursos em nível operacional com incerteza nos dados / Sistema de alocação de recursos de transporte com a presença de incerteza nos dadosLima, Matheus Garibalde Soares de 31 May 2012 (has links)
O estudo tem como finalidade tratar a alocação de recursos no nível operacional com a presença de incertezas. Para isso, foi proposta uma abordagem de otimização usando métodos heurísticos. As soluções de problemas de produção e logística, comumente abordadas em pesquisa operacional, exploram diversos parâmetros dentre os quais o presente estudo considera três como de incerteza: demanda, tempo de execução e indisponibilidade de recursos. Para tal finalidade foi escolhido como estudo de caso a resolução de um problema de logística. O problema consiste na minimização dos custos de operação, na seleção de veículos em uma frota heterogênea, consolidação das cargas para cada cliente e na seleção do tipo de frete utilizado. Quanto ao tipo de frete, são considerados dois, os quais se diferenciam quanto aos ativos envolvidos na produção e ao tipo de prestação de serviço, sendo eles: i) frota da empresa com serviço terceirizado; ii) frota e serviços totalmente terceirizados. O problema original foi decomposto em duas etapas: i) Compartimentalizador e ii) Alocador. As duas etapas são solucionadas via a abordagem de Busca Tabu, sendo que a primeira etapa (Compartimentalizador) gera uma lista dos carregamentos factíveis que atenda pedidos de até três clientes distintos. O Alocador se utiliza da lista dos carregamentos factíveis para definir como e quando cada pedido será atendido. Os resultados indicam a viabilidade da adoção desta abordagem para a solução de problemas reais. / The study aims to address the allocation of resources at the operational level under uncertainties. For this reason, it was proposed an optimization approach based on heuristic methods. The resolutions of production and logistics problems, commonly addressed in operational research, explore various parameters among which the present study considers three variables of uncertainty: demand, operation time and resources availability. For this purpose a logistics problem was chosen as study of case. The problem consists in minimizing cost operation, selection of vehicles in a heterogeneous fleet, consolidation of loads for each client and selecting the type of freight payables. Regarding of freight payables types, there are centered in two different tariffs, mainly due to assets and service negotiation, such as: i) fleet controlled by company and service outsource; ii) fleet and service completely outsource. The resolution of the original problem was broke down in two steps: i) Compartmentalizer and ii) Allocator. Both steps are solved through Tabu Search approach; the first step (Compartmentalizer) generates a list of feasible shipments to fulfill orders up to three different customers. The second step, the allocator uses the list of feasible shipments to define how and when each request will be supplied. The results aim the feasibility of assumes this approach in order to solve real problems.
|
73 |
PROGRAMAÇÃO DINÂMICA HEURÍSTICA DUAL E REDES DE FUNÇÕES DE BASE RADIAL PARA SOLUÇÃO DA EQUAÇÃO DE HAMILTON-JACOBI-BELLMAN EM PROBLEMAS DE CONTROLE ÓTIMO / DUAL HEURISTIC DYNAMIC PROGRAMMING AND RADIAL BASIS FUNCTIONS NETWORKS FOR SOLUTION OF THE EQUATION OF HAMILTON-JACOBI-BELLMAN IN PROBLEMS OPTIMAL CONTROLAndrade, Gustavo Araújo de 28 April 2014 (has links)
Made available in DSpace on 2016-08-17T14:53:28Z (GMT). No. of bitstreams: 1
Dissertacao Gustavo Araujo.pdf: 2606649 bytes, checksum: efb1a5ded768b058f25d23ee8967bd38 (MD5)
Previous issue date: 2014-04-28 / In this work the main objective is to present the development of learning algorithms for online application for the solution of algebraic Hamilton-Jacobi-Bellman equation. The concepts covered are focused on developing the methodology for control systems, through techniques that aims to design online adaptive controllers to reject noise sensors, parametric variations and modeling errors. Concepts of neurodynamic programming and reinforcement
learning are are discussed to design algorithms where the context of a given operating point causes the control system to adapt and thus present the performance according to specifications
design. Are designed methods for online estimation of adaptive critic focusing efforts on techniques for gradient estimating of the environment value function. / Neste trabalho o principal objetivo é apresentar o desenvolvimento de algoritmos de aprendizagem para execução online para a solução da equação algébrica de Hamilton-Jacobi-Bellman. Os conceitos abordados se concentram no desenvolvimento da metodologia para sistemas de controle, por meio de técnicas que tem como objetivo o projeto online de controladores adaptativos são projetados para rejeitar ruídos de sensores, variações paramétricas e erros de modelagem. Conceitos de programação neurodinâmica e aprendizagem por reforço são abordados
para desenvolver algoritmos onde a contextualização de determinado ponto de operação faz com que o sistema de controle se adapte e, dessa forma, apresente o desempenho de acordo
com as especificações de projeto. Desenvolve-se métodos para a estimação online do crítico adaptativo concentrando os esforços em técnicas de estimação do gradiente da função valor do
ambiente.
|
74 |
Uso de métodos heurísticos e branch-and-bound para otimização do layout fabril da linha de montagem de um componente automotivo na região de CuritibaBalau, Adriano Pereira 25 September 2013 (has links)
As empresas de manufatura, nos dias atuais, estão incessantemente em busca de redução de custos, motivadas pela concorrência e competição, que são características fortes da globalização. No Sistema Toyota de Produção (OHNO, 1988) é ressaltada a questão dos sete desperdícios que podem existir em um processo e que, consequentemente, geram custos no produto sem, contudo agregar valor ao mesmo. Um dos desperdícios mais comumente encontrados são os do fluxo do produto semiacabado (WIP), matéria-prima ou produto acabado. O estudo de Layout visa otimizar a disposição dos recursos dentro de um processo de modo a minimizar, entre outros, o fluxo de materiais. O presente estudo visa apresentar um caso real de uma grande empresa de autopeças na região de Curitiba, PR, que gasta milhões por ano em mudanças de Layout. O objeto de estudo é a linha de montagem de um determinado componente que esta empresa fabrica. Através do uso de Métodos Heurísticos propõe-se uma abordagem para a otimização do Layout desta linha de montagem. Esta abordagem foi dividida em duas etapas. Na primeira etapa, foi resolvido o problema de formação de células (visando melhorar os tempos computacionais, bem como a qualidade da solução), visando associar as máquinas disponíveis às peças a serem fabricadas. Na segunda etapa, resolve-se o problema de otimização do layout, considerando as associações de máquinas às peças feitas na primeira etapa. Nas duas etapas testou-se o uso de uma abordagem meta-heurística (busca tabu) híbrida, bem como o método exato denominado Branch-and-Bound (este na primeira etapa), para resolver o problema. Os resultados encontrados no arranjo físico das máquinas mostraram-se bastante promissores. / Nowadays, the manufacturing enterprises are constantly looking for costs reduction, driven by rivalry and competition, which are strong globalization characteristics. In the Toyota Production System (OHNO, 1988), are highlighted the seven wastes which can exist in a manufacturing process and that, consequently, generate costs to the product without, however, adding value to it. Some commonly found wastes are the work-in-process (WIP), raw material or finished products flow wastes. The layout study aims to optimize the layout of facilities inside a process to minimize, among others, the materials flow. This study aims to present a real case of a huge auto parts manufacturer enterprise located in Curitiba, PR, which spends millions a year on layout changes. The object of study is the assembly line of a specifical component that this company manufactures. Using Heuristic methods, it proposes an approach for the layout optimizing of this assembly line. This approach was divided in two stages: in the first one, the cell formation problem (in order to improve the computational time, as well as the solution quality) was solved in order to associate machines to parts. In the second stage, the layout optimizing problem is solved, considering the combination of machines to parts (made in first stage). In both stages the hybrid meta-heuristics approach (tabu search), as well as the Exact method so called Branch-and-Bound (this on first stage), were tested to solve this problem. The results found on layout of facilities were quite promising.
|
75 |
Modelo de otimização multiobjetivo baseado em algoritmo Shuffled Frog Leaping para transporte de produtos em redes de dutos / Multiobjective optimization model based on shuffled frog leaping algorithm for transporting products in pipeline networksLamboia, Fabiany 20 November 2015 (has links)
ANP; FINEP; MCT / A modelagem de sistemas envolvidos no gerenciamento das operações de uma rede de dutos é um problema de otimização que envolve complexas restrições operacionais. O transporte por meio de dutos mostra-se confiável e econômico, principalmente para grandes volumes. Porém, a elevada taxa de ocupação das redes de distribuição e a quantidade de diferentes produtos que devem ser transportados sob condições operacionais diferenciadas levam a cenários operacionais complexos. Uma melhoria na eficiência do transporte de produtos através de redes de dutos pode ser obtida por uma melhor alocação dos recursos disponíveis, contudo além de ser este um problema combinatório de difícil solução, é também um problema de otimização multiobjetivo. Para resolver este tipo de problema, as técnicas baseadas em metaheurísticas populacionais, em especial os algoritmos evolucionários parecem adequados pois tratam simultaneamente com um conjunto de soluções possíveis que permite encontrar um conjunto de soluções ótimas de Pareto com a simples execução do algoritmo. Neste contexto, este trabalho tem como objetivo o desenvolvimento de modelos de otimização multiobjetivo aplicados ao escalonamento de operações em rede de dutos existente na indústria P & G, investigando técnicas baseadas em metaheurísticas que auxiliem na tomada de decisões deste cenário específico, em especial, técnicas baseadas em algoritmos evolucionários multiobjetivos. Assim, usa-se uma abordagem que propõe o uso de um algoritmo evolucionário multiobjetivo inspirado a partir da evolução memética de um grupo de sapos que procuram por comida: o SFLA (Shuffled Frog Leaping Algorithm). Os resultados obtidos a partir das simulações realizadas serão comparados com um algoritmo muito conhecido e usado na literatura, o algoritmo genético (AG). Além disso, como este trabalho utiliza um modelo de otimização multiobjetivo e nestes casos procura-se um conjunto de soluções Pareto-ótimas, uma nova abordagem é proposta para o algoritmo SFLA: o Modified Shuffled Frog-leaping Pareto Approach (MSFLPA). Esta nova abordagem combina o uso de uma pequena população e uma estratégia de arquivamento com um processo de reinicialização da população usando duas memórias auxiliares para armazenar soluções não-dominadas~(Conjunto de Pareto) encontradas durante a evolução da população. Para validar o desempenho e a eficiência do algoritmo MSFLPA proposto, cinco funções Zitzler-Deb-Thiele são utilizadas para comparar com dois algoritmos genéticos multi-objetivos bem conhecidos da literatura: NSGA-II e SPEA2. Os experimentos numéricos indicam que MSFLPA produz soluções bem espalhadas~(diversidade) e converge para a verdadeira fronteira de Pareto e verifica-se ser eficiente e competitivo para resolver problemas multiobjetivos. Após essa validação, o MSFLPA é usado para otimizar a alocação dos recursos e para resolver o problema de programação de uma rede de dutos e quando comparado com o NSGA-II e microAG, MSFLPA tem se mostrado uma nova alternativa eficaz para a solução de problemas multiobjetivos com mais de dois objetivos, como é o caso dos problemas de escalonamento de redes de dutos. / The development of model to support pipeline network operation management is an optimization problem which involves complex operational constraints. The product transport through pipelines proves reliable and economical, especially for large volumes. However, the high occupancy rate of the distribution networks and the amount of different products should be transported under different operating conditions lead to complex operational scenarios. An efficiency improvement of products transport through pipeline networks can be obtained by a better allocation of available resources. However that is a hard solution combinatorial problem with multiobjective optimization characteristics. An alternative to efficient solve this type of problem is the use of metaheuristics such Multiobjective Evolutionary Algorithms~(MOEA). MOEA uses a population of solutions in its search, and multiple Pareto-optimal solutions can, in principle, be found in one single run. This work aims to develop a model of multi-criterion optimization applied to scheduling operations in a real-world pipeline network in the oil industry. We use a metaheuristic optimization method inspired from the memetic evolution of a group of frogs when seeking for food: SFLA~(Shuffled Frog Leaping Algorithm). The results obtained from the simulations are compared to an algorithm well known in the literature: genetic algorithm~(GA). Moreover, this works then introduces a new approach of the original shuffled frog leaping algorithm to create a modified form of the algorithm: the Modified Shuffled frog-leaping Pareto Approach~(MSFLPA). The main goal of MSFLPA is to represent and recover the entire Pareto front to a modeled problem, moreover an efficient and competitive algorithm to solve multi-objective scheduling problems with more than two conflicting objectives. This new approach combines the use of a small population and an archiving strategy with a procedure to restart the population using two auxiliary memories to store nondominated solutions (Pareto set) found during population evolution. To validate the performance and efficiency of the proposed MSFLPA in spread Pareto front, five Zitzler-Deb-Thiele functions are examined and compared against two well-known multi-objective genetic algorithms: NSGA-II and SPEA2. The numerical experiments indicate that MSFLPA yields spread solutions and converges to the true Pareto front and it is verified to be efficient and competitive for solving multi-objective problem. After this validation, the MSFLPA is used to optimize the allocation of the resources and to solve the scheduling problem of a real world pipeline network and if compared with NSGA-II and microGA, MSFLPA is verified to be a new effective alternative for solving of multi-objective problems with more than two objectives as it is the case of the pipeline scheduling problems.
|
76 |
Uso de métodos heurísticos e branch-and-bound para otimização do layout fabril da linha de montagem de um componente automotivo na região de CuritibaBalau, Adriano Pereira 25 September 2013 (has links)
As empresas de manufatura, nos dias atuais, estão incessantemente em busca de redução de custos, motivadas pela concorrência e competição, que são características fortes da globalização. No Sistema Toyota de Produção (OHNO, 1988) é ressaltada a questão dos sete desperdícios que podem existir em um processo e que, consequentemente, geram custos no produto sem, contudo agregar valor ao mesmo. Um dos desperdícios mais comumente encontrados são os do fluxo do produto semiacabado (WIP), matéria-prima ou produto acabado. O estudo de Layout visa otimizar a disposição dos recursos dentro de um processo de modo a minimizar, entre outros, o fluxo de materiais. O presente estudo visa apresentar um caso real de uma grande empresa de autopeças na região de Curitiba, PR, que gasta milhões por ano em mudanças de Layout. O objeto de estudo é a linha de montagem de um determinado componente que esta empresa fabrica. Através do uso de Métodos Heurísticos propõe-se uma abordagem para a otimização do Layout desta linha de montagem. Esta abordagem foi dividida em duas etapas. Na primeira etapa, foi resolvido o problema de formação de células (visando melhorar os tempos computacionais, bem como a qualidade da solução), visando associar as máquinas disponíveis às peças a serem fabricadas. Na segunda etapa, resolve-se o problema de otimização do layout, considerando as associações de máquinas às peças feitas na primeira etapa. Nas duas etapas testou-se o uso de uma abordagem meta-heurística (busca tabu) híbrida, bem como o método exato denominado Branch-and-Bound (este na primeira etapa), para resolver o problema. Os resultados encontrados no arranjo físico das máquinas mostraram-se bastante promissores. / Nowadays, the manufacturing enterprises are constantly looking for costs reduction, driven by rivalry and competition, which are strong globalization characteristics. In the Toyota Production System (OHNO, 1988), are highlighted the seven wastes which can exist in a manufacturing process and that, consequently, generate costs to the product without, however, adding value to it. Some commonly found wastes are the work-in-process (WIP), raw material or finished products flow wastes. The layout study aims to optimize the layout of facilities inside a process to minimize, among others, the materials flow. This study aims to present a real case of a huge auto parts manufacturer enterprise located in Curitiba, PR, which spends millions a year on layout changes. The object of study is the assembly line of a specifical component that this company manufactures. Using Heuristic methods, it proposes an approach for the layout optimizing of this assembly line. This approach was divided in two stages: in the first one, the cell formation problem (in order to improve the computational time, as well as the solution quality) was solved in order to associate machines to parts. In the second stage, the layout optimizing problem is solved, considering the combination of machines to parts (made in first stage). In both stages the hybrid meta-heuristics approach (tabu search), as well as the Exact method so called Branch-and-Bound (this on first stage), were tested to solve this problem. The results found on layout of facilities were quite promising.
|
77 |
Modelo de otimização multiobjetivo baseado em algoritmo Shuffled Frog Leaping para transporte de produtos em redes de dutos / Multiobjective optimization model based on shuffled frog leaping algorithm for transporting products in pipeline networksLamboia, Fabiany 20 November 2015 (has links)
ANP; FINEP; MCT / A modelagem de sistemas envolvidos no gerenciamento das operações de uma rede de dutos é um problema de otimização que envolve complexas restrições operacionais. O transporte por meio de dutos mostra-se confiável e econômico, principalmente para grandes volumes. Porém, a elevada taxa de ocupação das redes de distribuição e a quantidade de diferentes produtos que devem ser transportados sob condições operacionais diferenciadas levam a cenários operacionais complexos. Uma melhoria na eficiência do transporte de produtos através de redes de dutos pode ser obtida por uma melhor alocação dos recursos disponíveis, contudo além de ser este um problema combinatório de difícil solução, é também um problema de otimização multiobjetivo. Para resolver este tipo de problema, as técnicas baseadas em metaheurísticas populacionais, em especial os algoritmos evolucionários parecem adequados pois tratam simultaneamente com um conjunto de soluções possíveis que permite encontrar um conjunto de soluções ótimas de Pareto com a simples execução do algoritmo. Neste contexto, este trabalho tem como objetivo o desenvolvimento de modelos de otimização multiobjetivo aplicados ao escalonamento de operações em rede de dutos existente na indústria P & G, investigando técnicas baseadas em metaheurísticas que auxiliem na tomada de decisões deste cenário específico, em especial, técnicas baseadas em algoritmos evolucionários multiobjetivos. Assim, usa-se uma abordagem que propõe o uso de um algoritmo evolucionário multiobjetivo inspirado a partir da evolução memética de um grupo de sapos que procuram por comida: o SFLA (Shuffled Frog Leaping Algorithm). Os resultados obtidos a partir das simulações realizadas serão comparados com um algoritmo muito conhecido e usado na literatura, o algoritmo genético (AG). Além disso, como este trabalho utiliza um modelo de otimização multiobjetivo e nestes casos procura-se um conjunto de soluções Pareto-ótimas, uma nova abordagem é proposta para o algoritmo SFLA: o Modified Shuffled Frog-leaping Pareto Approach (MSFLPA). Esta nova abordagem combina o uso de uma pequena população e uma estratégia de arquivamento com um processo de reinicialização da população usando duas memórias auxiliares para armazenar soluções não-dominadas~(Conjunto de Pareto) encontradas durante a evolução da população. Para validar o desempenho e a eficiência do algoritmo MSFLPA proposto, cinco funções Zitzler-Deb-Thiele são utilizadas para comparar com dois algoritmos genéticos multi-objetivos bem conhecidos da literatura: NSGA-II e SPEA2. Os experimentos numéricos indicam que MSFLPA produz soluções bem espalhadas~(diversidade) e converge para a verdadeira fronteira de Pareto e verifica-se ser eficiente e competitivo para resolver problemas multiobjetivos. Após essa validação, o MSFLPA é usado para otimizar a alocação dos recursos e para resolver o problema de programação de uma rede de dutos e quando comparado com o NSGA-II e microAG, MSFLPA tem se mostrado uma nova alternativa eficaz para a solução de problemas multiobjetivos com mais de dois objetivos, como é o caso dos problemas de escalonamento de redes de dutos. / The development of model to support pipeline network operation management is an optimization problem which involves complex operational constraints. The product transport through pipelines proves reliable and economical, especially for large volumes. However, the high occupancy rate of the distribution networks and the amount of different products should be transported under different operating conditions lead to complex operational scenarios. An efficiency improvement of products transport through pipeline networks can be obtained by a better allocation of available resources. However that is a hard solution combinatorial problem with multiobjective optimization characteristics. An alternative to efficient solve this type of problem is the use of metaheuristics such Multiobjective Evolutionary Algorithms~(MOEA). MOEA uses a population of solutions in its search, and multiple Pareto-optimal solutions can, in principle, be found in one single run. This work aims to develop a model of multi-criterion optimization applied to scheduling operations in a real-world pipeline network in the oil industry. We use a metaheuristic optimization method inspired from the memetic evolution of a group of frogs when seeking for food: SFLA~(Shuffled Frog Leaping Algorithm). The results obtained from the simulations are compared to an algorithm well known in the literature: genetic algorithm~(GA). Moreover, this works then introduces a new approach of the original shuffled frog leaping algorithm to create a modified form of the algorithm: the Modified Shuffled frog-leaping Pareto Approach~(MSFLPA). The main goal of MSFLPA is to represent and recover the entire Pareto front to a modeled problem, moreover an efficient and competitive algorithm to solve multi-objective scheduling problems with more than two conflicting objectives. This new approach combines the use of a small population and an archiving strategy with a procedure to restart the population using two auxiliary memories to store nondominated solutions (Pareto set) found during population evolution. To validate the performance and efficiency of the proposed MSFLPA in spread Pareto front, five Zitzler-Deb-Thiele functions are examined and compared against two well-known multi-objective genetic algorithms: NSGA-II and SPEA2. The numerical experiments indicate that MSFLPA yields spread solutions and converges to the true Pareto front and it is verified to be efficient and competitive for solving multi-objective problem. After this validation, the MSFLPA is used to optimize the allocation of the resources and to solve the scheduling problem of a real world pipeline network and if compared with NSGA-II and microGA, MSFLPA is verified to be a new effective alternative for solving of multi-objective problems with more than two objectives as it is the case of the pipeline scheduling problems.
|
Page generated in 0.4836 seconds