1 |
Evolutionary Approaches to Robot Path PlanningKent, Simon January 1999 (has links)
The ultimate goal in robotics is to create machines which are more independent and rely less on humans to guide them in their operation. There are many sub-systems which may be present in such a robot, one of which is path planning — the ability to determine a sequence of positions or configurations between an initial and goal position within a particular obstacle cluttered workspace. Many classical path planning techniques have been developed, but these tend to have drawbacks such as their computational requirements; the suitability of the plans they produce for a particular application; or how well they are able to generalise to unseen problems. In recent years, evolutionary based problem solving techniques have seen a rise in popularity, possibly coinciding with the improvement in the computational power afforded researches by successful developments in hardware. These techniques adopt some of the features of natural evolution and mimic them in a computer. The increase in the number of publications in the areas of Genetic Algorithms (GA) and Genetic Programming (GP) demonstrate the success achieved when applying these techniques to ever more problem areas. This dissertation presents research conducted to determine whether there is a place for Evolutionary Approaches, and specifically GA and GP, in the development of future path planning techniques.
|
2 |
A genetic algorithm for the vehicle routing problem with time windows /Cheng, Lin. January 2005 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2005. / Includes bibliographical references (leaves: [26]-[27])
|
3 |
Finite Alphabet Blind SeparationBehr, Merle 06 December 2017 (has links)
No description available.
|
4 |
A Genetic-Based Search for Adaptive Table Recognition in SpreadsheetsLehner, Wolfgang, Koci, Elvis, Thiele, Maik, Romero, Oscar 22 June 2023 (has links)
Spreadsheets are very successful content generation tools, used in almost every enterprise to create a wealth of information. However, this information is often intermingled with various formatting, layout, and textual metadata, making it hard to identify and interpret the tabular payload. Previous works proposed to solve this problem by mainly using heuristics. Although fast to implement, these approaches fail to capture the high variability of user-generated spreadsheet tables. Therefore, in this paper, we propose a supervised approach that is able to adapt to arbitrary spreadsheet datasets. We use a graph model to represent the contents of a sheet, which carries layout and spatial features. Subsequently, we apply genetic-based approaches for graph partitioning, to recognize the parts of the graph corresponding to tables in the sheet. The search for tables is guided by an objective function, which is tuned to match the specific characteristics of a given dataset. We present the feasibility of this approach with an experimental evaluation, on a large, real-world spreadsheet corpus.
|
5 |
Stochastic optimization by evolutionary methods applied to autonomous aircraft flight control / Optimisation stochastique par évolution artificielle appliquée à la conduite autonome d’engins aériensQuerry, Stephane 29 September 2014 (has links)
Le but de ce doctorat est de déterminer dans quelle mesure les algorithmes issus de l’intelligence artificielle, principalement les Algorithmes Evolutionnaires et la Programmation Génétique, pourraient aider les algorithmes de l’automatique classique afin de permettre aux engins autonomes de disposer de capacités bien supérieures, et ce dans les domaines de l’identification, de la planification de trajectoire, du pilotage et de la navigation.De nouveaux algorithmes ont été développés, dans les domaines de l’identification, de la planification de trajectoire, de la navigation et du contrôle, et ont été testés sur des systèmes de simulation et des aéronefs du monde réel (Oktokopter du ST2I, Bebop.Drone de la société Parrot, Twin Otter et F-16 de la NASA) de manière à évaluer les apports de ces nouvelles approches par rapport à l’état de l’art.La plupart de ces nouvelles approches ont permis d’obtenir de très bons résultats comparés à l’état de l’art, notamment dans le domaine de l’identification et de la commande, et un approfondissement des travaux devraient être engagé afin de développer le potentiel applicatifs de certains algorithmes. / The object of this PhD has consisted in elaborating evolutionary computing algorithms to find interesting solutions to important problems in several domains of automation science, applied to aircrafts mission conduction and to understand what could be the advantages of using such approaches, compared to the state-of-the-art, in terms of efficiency, robustness, and effort of implementation.New algorithms have been developed, in Identification, Path planning, Navigation and Control and have been tested on simulation and on real world platforms (AR.Drone 3.0 UAV (Parrot), Oktokopter UAV, Twin Otter and military fighter F-16 (NASA LaRC)), to assess the performances improvements, given by the new proposed approaches.Most of these new approaches provide very interesting results; and research work (on control by evolutionary algorithms, identification by genetic programming and relative navigation) should be engaged to plan potential applications in different real world technologies.
|
6 |
Heuristické algoritmy pro optimalizaci / Heuristic algorithms in optimizationŠandera, Čeněk January 2008 (has links)
Práce se zabývá určením pravděpodobnostních rozdělení pro stochastické programování, při kterém jsou optimální hodnoty účelové funkce extrémní (minimální nebo maximální). Rozdělení se určuje pomocí heuristických metod, konkrétně pomocí genetických algoritmů, kde celá populace aproximuje hledané rozdělení. První kapitoly popisují obecně matematické a stochastické programování a dále jsou popsány různé heuristické metody a s důrazem na genetické algoritmy. Těžiště práce je v naprogramování daného algoritmu a otestování na úlohách lineárních a kvadratických stochastických modelů.
|
Page generated in 0.1082 seconds