• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 20
  • 14
  • 13
  • 12
  • 11
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Failure Analysis of the World Trade Center 5 Building

LaMalva, Kevin Joseph 29 April 2007 (has links)
This project involves a failure analysis of the internal structural collapse that occurred in World Trade Center 5 (WTC 5) due to fire exposure alone on September 11, 2001. It is hypothesized that the steel column-tree assembly failed during the heating phase of the fire. The results of this research have serious and far-reaching implications, for this method of construction is utilized in approximately 20,000 existing buildings and continues to be very popular. Catastrophic failure during the heating phase of a fire would endanger the lives of firefighters and building occupants undergoing extended egress times (e.g., high-rise buildings), or relying upon defend-in-place strategies (e.g., hospitals). Computer software was used to reconstruct the fire event and predict the structural performance of the assembly when exposed to the fire. Results from a finite element, thermal-stress model confirms this hypothesis, for it is concluded that the catastrophic, progressive structural collapse occurred approximately 2 hours into the fire exposure.
32

Progressive-Failure Analysis of Steel Building Structures under Abnormal Loads

Liu, Yuxin 30 March 2007 (has links)
Engineered structures are designed to resist all expected loadings without failure. However, structural failures do occasionally occur due to inadequate design and construction, especially for extreme and abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading events, and develops a method of advanced analysis for predicting the progressive collapse behaviour of building structures in the plastic limit state. Combined-stress failure states and stiffness degradation models are proposed to simulate plastic deformation of structural members. Elliptic force-deformation relationships are employed to model the nonlinear material behaviour of members. The stiffness degradation of semirigid connections is modeled by a moment-rotation relationship with four parameters. Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into account elastic-plastic bending, shearing and axial deformations. A computer-based incremental-load nonlinear analysis procedure is developed that progressively updates member stiffness using reduction factors that simulate degraded stiffness behaviour. Three types of localized damage modes are investigated to identify different connection damage scenarios. Account is taken of any debris loading that occurs when disengaged structural components fall onto lower parts of the structure. The associated dynamic effect is taken into account for the quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring thereafter involves a series of failure events associated with topological changes. The progressive-failure analysis procedure is based on the alternate-load-path method suggested in the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The deterioration of structural strength is progressively traced to the state at which either global stability is reached or progressive collapse to ground level occurs for part or all of the structure. The analysis procedure is extensively illustrated for several planar steel moment frames, including account for the influence of damaged connections and semi-rigid connection behaviour. The results obtained demonstrate that the proposed method is potentially a powerful tool for the analysis of steel building structures under normal and abnormal loads.
33

Progressive-Failure Analysis of Steel Building Structures under Abnormal Loads

Liu, Yuxin 30 March 2007 (has links)
Engineered structures are designed to resist all expected loadings without failure. However, structural failures do occasionally occur due to inadequate design and construction, especially for extreme and abnormal loads. This thesis concerns the progressive collapse of structures due to abnormal loading events, and develops a method of advanced analysis for predicting the progressive collapse behaviour of building structures in the plastic limit state. Combined-stress failure states and stiffness degradation models are proposed to simulate plastic deformation of structural members. Elliptic force-deformation relationships are employed to model the nonlinear material behaviour of members. The stiffness degradation of semirigid connections is modeled by a moment-rotation relationship with four parameters. Having the proposed nonlinear model, a generic member stiffness matrix is derived taking into account elastic-plastic bending, shearing and axial deformations. A computer-based incremental-load nonlinear analysis procedure is developed that progressively updates member stiffness using reduction factors that simulate degraded stiffness behaviour. Three types of localized damage modes are investigated to identify different connection damage scenarios. Account is taken of any debris loading that occurs when disengaged structural components fall onto lower parts of the structure. The associated dynamic effect is taken into account for the quasi-static analysis by utilizing an impact amplification factor. Any progressive collapse occurring thereafter involves a series of failure events associated with topological changes. The progressive-failure analysis procedure is based on the alternate-load-path method suggested in the design and analysis guidelines of the General Services of Administration (GSA, 2003) and the Department of Defense (DoD, 2005). The residual load carrying capacity of the damaged framework is analyzed by incrementally applying prevailing long-term loads and impact debris loads. The deterioration of structural strength is progressively traced to the state at which either global stability is reached or progressive collapse to ground level occurs for part or all of the structure. The analysis procedure is extensively illustrated for several planar steel moment frames, including account for the influence of damaged connections and semi-rigid connection behaviour. The results obtained demonstrate that the proposed method is potentially a powerful tool for the analysis of steel building structures under normal and abnormal loads.
34

Contribution au développement d’outils analytiques et numériques pour quantifier et qualifier la robustesse des structures / Development of analytical and numerical tools to quantify and qualify the robustness of structure

Seck, El Hadji Boubacar 12 July 2018 (has links)
Les notions de robustesse structurale sont intégrées dans les codes de conception européens suite à l'effondrement partiel et progressif de la tour Ronan Point de Canning Town à Londres (Angleterre, 16.05.1968). Le cadre réglementaire des Eurocodes définit la robustesse comme l'aptitude d'une structure à résister à des événements accidentels dits identifiés (incendies, explosions, chocs) ou non identifiés (conséquences d'une erreur humaine, attentats) sans présenter de dégâts disproportionnés par rapport à la cause d'origine. Cette définition incite les ingénieurs à inclure dans les procédures de conception les notions de dommage initial (défaillance locale) et de dommage disproportionné (défaillance globale). L'objectif de ces travaux de thèse est de développer un outil de simulation de la robustesse de structures lorsque des incertitudes de sollicitations (évènement accidentel) et / ou une faute de dimensionnement (conception ou de réalisation) interfèrent avec les dimensionnements réglementaires. La robustesse est évaluée à travers un indice compris entre 0 (structure peu robuste) et 1 (structure très robuste) et calculé à partir des probabilités de défaillance initiale et globale. Cette thèse propose une méthodologie reposant sur la recherche d’arbres complets d'évènements illustrant l'ensemble des cheminements potentiels d'une défaillance initiale localisée jusqu'à la ruine globale. L'approche développée s'applique aux structures hyperstatiques, dans lesquelles la rupture d'un ou plusieurs éléments n'entraine pas systématiquement la ruine de l'ensemble de la structure. En effet, les éléments non endommagés restants peuvent être en mesure de supporter les chargements externes par une redistribution des efforts internes.La procédure est illustrée dans les cas de structures unidimensionnelles hyperstatiques de poutres bi-encastrées et d'un portique référencé dans les normes et classiquement étudié dans la littérature. Le mode local de défaillance de nos simulations est la formation d'une rotule (fragile ou plastique) lorsque le moment sollicitant appliqué atteint la valeur du moment résistant d'une section droite. Deux types de lois probabilistes, Gaussiennes et Log-normales, sont testées par l'approche développée et par des simulations Monte-Carlo. Les variables aléatoires choisies peuvent être indépendantes ou corrélées. Nous présentons les résultats sous forme d’arbres d'évènements comportant l'ensemble des branches exclusives, sans intersection entre branches issues d’un même nœud. Cette spécificité permet de calculer des indices caractérisant la robustesse de la structure selon chaque scénario.L'analyse de l’arbre des évènements et des indices de robustesse permet de mettre en évidence les fragilités potentielles pouvant engendrer une défaillance généralisée d'une structure vis-à-vis d’accidents ou d’actes de malveillance. La méthode développée fournit un outil de simulation et de diagnostic efficace, tant en phase de conception qu'en phase de réhabilitation, permettant d'envisager le renforcement de bâtis existants ou futurs et d'assurer la sécurité des personnes et des ouvrages environnants. / Localized initial failures in constructions can sometimes be followed by disproportionate damage (collapse) spreading to the whole or the major part of a building. Since the partial and progressive collapse of the Ronnan Point tower (London, $1968$) caused by a gas explosion, the concept of robustness has been introduced in standards. Structural robustness is defined as the ability of a structure to withstand unforeseen events causing local damage like fire, explosion or impact, without suffering disproportionate collapse. This definition encourages engineers to include the concepts of initial damage (local failure) and disproportionate damage (global failure) in design procedures. The main objective of this PhD work is to develop a simulation tool in order to highlight the potential weakness in a structure when uncertain sollicitations (accidental events) and/or dimensional fault (design or realization) interfere with the standard predictions. The robustness is evaluated by an index varying from 0 (non-robust structure) to 1 (very robust structure) and is calculated from the initial and global failure probabilities. The proposed methodology is based on an event tree analysis summurizing all the distinct potential scenarios, from the initial damage to the collapse of the structure. The developed approach is applied to statically indeterminate unidimensional structures like beams and frame. The redundancy's consequence is that the break of one or several cross sections will not necessarily lead to the collapse of the whole system: the redistribution of the internal efforts allows the remaining undamaged parts of the structure to support the external (applied) loading. The methodology is illustrated by some examples of clamped-clamped beam and frame, loaded with punctual forces. The cross sections are supposed to have an elastic behaviour until the formation of plastic hinges (local failure). Two types of probabilistic laws, Gaussian and Log-normal, are tested by the developed approach and by Monte-Carlo simulations. The chosen random variables can be either independent or correlated. The resulting complete event tree contains all the exclusive paths from an localised damage to the global failure, without intersection between branches stemming from the same node. This specific property allows to evaluate the robustness indexes of the structure with the ratio between the local and global probabilities, according to each scenario. The analysis of the event tree and of the robustness indexes allows to highlight the potential brittleness which could cause a generalized collapse of the structure with respect to accidents or malicious acts. The developed methodology provides an effective tool of simulation and diagnostic, both in the design phase and in the rehabilitation one, useful to the reinforcement of existing or future buildings and to ensure the safety of people and surrounding structures.
35

Collapse Experiments and Assessment of Masonry Wall Buildings

Li, Kai January 2017 (has links)
No description available.
36

Modellering och robusthetsanalys med parametrisk design : Effektivare visualisering av alternativa lastvägar vid bortfall av pelare

Kayhan, Özge, Mohamed, Zahra January 2020 (has links)
Today, 3D modelling and structural analysis of buildings are performed in various software. Collaboration between various software is common today but breaks the flow in the construction design phase. To achieve an uninterrupted flow in the construction design phase, a constellation of modelling and structural analysis is needed in a single software. To enable a constellation, there are today many developed digital methods for this.Parametric design is a digital method that is mostly used to handle complex shapes. In recent years, the parametric design has evolved even more and the algorithmic thinking in parametric design provides opportunities for performing structural analyses. The development includes various plug-in programs that have structural analysis capabilities. However, this degree project emphasizes that this can be achieved without a plug-in program that has structural analysis capabilities. With only one visualization program and a plug-in that handles visual programming, the ability to produce what is to be visualized with a script arises.The structural analysis in this thesis includes robustness analysis that is important in the context of progressive collapse, and only the alternative load path method is considered. Progressive collapse is an important analysis for buildings that arise due to known or unknown accident loads. To increase the redundancy of the bearing structure, the alternative load path method can be used, which is a branch under unknown accident loads.Robustness analysis is a time-consuming process and automation can make this more efficient. With parameter-driven modelling and robustness analysis, the constructor can indicate at an early stage possible structure failure before the building is completed. Early action also leads to a reduction in waste of material resources.The alternative load path method provides the possibility to analyze whether the building receives alternate load path in the event of loss of load-bearing elements. This research report analyses column loss. Automated visualization of alternate load path enables to be able to analyze the load redistribution after the loss of column.Today some buildings are at risk against the progressive collapse, people's lives and health are therefore at risk when all or part of the building collapses. That is why efficiency is needed. The research report showed that the script automated the modelling and robustness analysis of buildings. Two different loss scenarios were analyzed and the authors found different updated loading areas and load redistribution.
37

[en] ANALYSIS OF THE PROGRESSIVE COLLAPSE OF A REINFORCED CONCRETE STRUCTURE USING THE FINITE ELEMENT METHOD / [pt] ANÁLISE DO COLAPSO PROGRESSIVO DE UMA ESTRUTURA DE CONCRETO ARMADO POR MEIO DO MÉTODO DOS ELEMENTOS FINITOS

JOSE GUILHERME PORTO OLIVEIRA 16 August 2021 (has links)
[pt] Edifícios com as mais diversas finalidades estão sujeitos a eventos extremos, tais como impacto de veículos, explosões, e perdas súbitas de membros essenciais para a garantia da sua estabilidade. O colapso progressivo pode ser definido como o processo no qual um dano localizado leva a uma ruína em cadeia, causando a queda de um edifício inteiro ou de parte considerável dele. A perda repentina de determinado membro essencial devido às cargas excepcionais pode desencadear o colapso progressivo de uma estrutura, causando enormes prejuízos humanos e econômicos. O colapso progressivo é fenômeno de natureza dinâmica e não linear, sendo assim, a sua modelagem é complexa. A técnica mais empregada para avaliação do colapso progressivo de estruturas é o método dos caminhos alternativos, que verifica o comportamento da estrutura ante a remoção de um membro essencial de suporte, analisando assim sua capacidade de redistribuição de esforços e resistência ao aumento súbito de carga em uma situação crítica. O trabalho realizou sucessivas análises de modelos da estrutura de um edifício em concreto armado, adotando grau de complexidade progressivo a cada uma delas, utilizando o método dos caminhos alternativos. Analisou-se ao final a efetividade e a importância de cada uma das etapas de análise empregadas no trabalho. A estrutura dimensionada conforme a norma brasileira de concreto armado necessitou de ajustes para atender aos requisitos mínimos de resistência ao colapso progressivo. / [en] Buildings with the most diverse purposes are subject to extreme events, such as vehicle impact, explosions, and sudden loss of members essential to their stability. Progressive collapse can be defined as the process in which a localized damage leads to chain failure, causing the fall of an entire building or a large part of it. The sudden loss of an essential member due to exceptional loads can trigger the progressive collapse of a structure, causing enormous human and economic damage. Progressive collapse is a dynamic nonlinear phenomenon, so its modeling is complex. The most employed technique for evaluation of progressive collapse is the alternative load path method, which verifies the structure behavior after the sudden loss of a load-bearing element, checking its stress redistribution capacity and strength to load increase in critical situations. This work realized successive analysis of structural models of a reinforced concrete building, adopting a progressive complexity to each of them, using the alternative path method. At the end, the effectiveness and importance of each of the analysis steps employed at work were analyzed. The structure designed acoording to the reinforced concrete brazilian standard needed adjustments to meet the minimum resistance requirements of progressive collapse.
38

Utdragskapacitet Sidokoppling Håldäck

Sandahl, William, Bragsjö, Jesper January 2017 (has links)
To achieve structural integrity in precast concrete systems, connections between elements must be capable to transfer both vertical and horizontal loads which puts high demands on single ties. Hollow-core slabs are often used to stabilize the structural system which puts high demands on the connections between the slab and the buildings stabilizing units. Because of this, the connections need to withstand high tensile and shear forces. The purpose of this report is to investigate the tensile capacity of tie-connections used between hollow-core slabs that are parallel with e.g. stabilizing walls and compare with current design methods. Current design methods suggest that tensile failure will occur in the roof and bottom of the cores which provides low design capacities. Two connections are investigated through full scale pull-out tests where the results are compared with the design methods. The results from testing the tensile capacity show that the failure module occurred as suggested. However, the tests show significantly higher capacity than proposed by the design methods. Eurocodes Design assisted by testing are applied to the test result and a new design method is proposed. Both provides design values that are approximately twice as large as the values suggested in previous design methods.
39

Progressive collapse simulation of reinforced concrete structures: influence of design and material parameters and investigation of the strain rate effects

Santafe Iribarren, Berta 17 June 2011 (has links)
This doctoral research work focuses on the simulation of progressive collapse of reinforced concrete structures. It aims at contributing to the ‘alternate load path’ design approach suggested by the General Services Administration (GSA) and the Department of Defense (DoD) of the United States, by providing a detailed yet flexible numerical modelling tool. <p><p>The finite element formulation adopted here is based on a multilevel approach where the response at the structural level is naturally deduced from the behaviour of the constituents (concrete and steel) at the material level. One-dimensional nonlinear constitutive laws are used to model the material response of concrete and steel. These constitutive equations are introduced in a layered beam approach, where the cross-sections of the structural members are discretised through a finite number of layers. This modelling strategy allows deriving physically motivated relationships between generalised stresses and strains at the sectional level. Additionally, a gradual sectional strength degradation can be obtained as a consequence of the progressive failure of the constitutive layers. This means that complex nonlinear sectional responses exhibiting softening can be obtained even for simplified one dimensional constitutive laws for the constituents.<p><p>This numerical formulation is used in dynamic progressive collapse simulations to study the structural response of a multi-storey planar frame subject to a sudden column loss. The versatility of the proposed methodology allows assessing the influence of the main material and design parameters in the structural failure. Furthermore, the effect of particular modelling options of the progressive collapse simulation technique, such as the column removal time or the strategy adopted for the structural verification, can be evaluated.<p><p>The potential strain rate effects on the structural response of reinforced concrete frames are also investigated. To this end, a strain rate dependent material formulation is developed, where the rate effects are introduced in both the concrete and steel constitutive response. These effects are incorporated at the structural level through the multilayered beam approach. In order to assess the degree of rate dependence in progressive collapse, the results of rate dependent simulations are presented and compared to those obtained via the rate independent approach. The influence of certain parameters on the rate dependent structural failure is also studied.<p><p>The differences obtained in terms of progressive failure degree for the considered parametric variations and modelling options are analysed and discussed. The parameters observed to have a major influence on the structural response in a progressive collapse scenario are the ductility of the steel bars, the degree of symmetry and/or continuity of the reinforcement and the column removal time. The results also depend on the strategy considered (GSA vs DoD). The strain rate effects are confirmed to play a significant role in the failure pattern. Based on these observations, general recommendations for the design of progressive collapse resisting structures are finally derived.<p><p><p><p><p>L’effondrement progressif est un sujet de recherche qui a connu un grand développement suite aux événements désastreux qui se sont produits au cours des dernières décennies. Ce phénomène est déclenché par la défaillance soudaine d’un nombre réduit d’éléments porteurs de la structure, qui provoque une propagation en cascade de l’endommagement d’élément en élément jusqu’à affecter une partie importante, voire la totalité de l’ouvrage. Le résultat est donc disproportionné par rapport à la cause. La plupart des codes de construction ont inclus des prescriptions pour le dimensionnement des structures face aux actions accidentelles. Malheureusement, ces procédures se limitent à fournir des ‘règles de bonne pratique’, ou proposent des calculs simplifiés se caractérisant par un manque de détail pour permettre leur mise en oeuvre.<p><p>Cette thèse de doctorat intitulée Simulation de l’Effondrement Progressif des Structures en Béton Armé: Influence des Paramètres Materiaux et de Dimensionnement et Investigation des Effets de Vitesse a pour but de contribuer à la simulation numérique de l’effondrement progressif des structures en béton armé. Une formulation aux éléments finis basée sur une approche multi-échelles a été développée, où la réponse à l’échelle structurale est déduite à partir de la réponse au niveau matériel des constituants (le béton et l’acier). Les sections des éléments structuraux sont divisées en un nombre fini de couches pour lesquelles des lois constitutives unidimensionnelles sont postulées. Cet outil permet une dégradation graduelle de la résistance des sections en béton armé suite à la rupture progressive des couches. Des comportements complexes au niveau des points de Gauss peuvent être ainsi obtenus, et cela même à partir de lois unidimensionnelles pour les constituants.<p><p>Cette formulation est utilisée pour la simulation de l’effondrement progressif d’ossatures 2D, avec prise en compte des effets dynamiques. La versatilité de la présente stratégie numérique permet d’analyser l’influence de différents paramètres matériaux et de dimensionnement, ainsi que d’autres paramètres de modélisation, sur la réponse structurale face à la disparition soudaine d’une colonne.<p><p>Les effets de la vitesse de déformation sur le comportement des matériaux constituants est aussi un sujet d’attention dans ce travail de recherche. Des lois constitutives prenant en compte ces effets sont postulées et incorporées au niveau structural grâce à l’approche multi-couches. Le but est d’étudier l’influence des effets de la vitesse de chargement sur la réponse structurale face à la disparition d’un élément porteur. Les resultats obtenus à l’aide de cette approche avec effets de vitesse sont comparés à ceux obtenus avec des lois indépendantes de la vitesse.<p><p>Les différences dans la réponse à la disparition d’une colonne sont analysées pour les variations paramétriques étudiées. Les paramètres ayant une influence importante sont notamment: la ductilité des matériaux constituants et la disposition et/ou la symétrie des armatures. Les effets de vitesse sont également significatifs. Sur base de ces résultats, des recommandations sont proposées pour le dimensionnement et/ou l’analyse des structures face à l’effondrement progressif.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
40

Experimental and Analytical Collapse Evaluation of an Existing Building

Akah, Ebiji Anthony 15 October 2015 (has links)
No description available.

Page generated in 0.0981 seconds