• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Resource Allocation with Carrier Aggregation for Spectrum Sharing in Cellular Networks

Shajaiah, Haya Jamal 29 April 2016 (has links)
Recently, there has been a massive growth in the number of mobile users and their traffic. The data traffic volume almost doubles every year. Mobile users are currently running multiple applications that require higher bandwidth which makes users so limited to the service providers' resources. Increasing the utilization of the existing spectrum can significantly improve network capacity, data rates and user experience. Spectrum sharing enables wireless systems to harvest under-utilized swathes of spectrum, which would vastly increase the efficiency of spectrum usage. Making more spectrum available can provide significant gain in mobile broadband capacity only if those resources can be aggregated efficiently with the existing commercial mobile system resources. Carrier aggregation (CA) is one of the most distinct features of 4G systems including Long Term Evolution Advanced (LTE-Advanced). In this dissertation, a resource allocation with carrier aggregation framework is proposed to allocate multiple carriers resources optimally among users with elastic and inelastic traffic in cellular networks. We use utility proportional fairness allocation policy, where the fairness among users is in utility percentage of the application running on the user equipment (UE). A resource allocation (RA) with CA is proposed to allocate single or multiple carriers resources optimally among users subscribing for mobile services. Each user is guaranteed a minimum quality of service (QoS) that varies based on the user's application type. In addition, a resource allocation with user discrimination framework is proposed to allocate single or multiple carriers resources among users running multiple applications. Furthermore, an application-aware resource block (RB) scheduling with CA is proposed to assign RBs of multiple component carriers to users' applications based on a utility proportional fairness scheduling policy. We believe that secure spectrum auctions can revolutionize the spectrum utilization of cellular networks and satisfy the ever increasing demand for resources. Therefore, a framework for multi-tier dynamic spectrum sharing system is proposed to provide an efficient sharing of spectrum with commercial wireless system providers (WSPs) with an emphasis on federal spectrum sharing. The proposed spectrum sharing system (SSS) provides an efficient usage of spectrum resources, manages intra-WSP and inter-WSP interference and provides essential level of security, privacy, and obfuscation to enable the most efficient and reliable usage of the shared spectrum. It features an intermediate spectrum auctioneer responsible for allocating resources to commercial WSPs' base stations (BS)s by running secure spectrum auctions. In order to insure truthfulness in the proposed spectrum auction, an optimal bidding mechanism is proposed to enable BSs (bidders) to determine their true bidding values. We also present a resource allocation based on CA approach to determine the BS's optimal aggregated rate allocated to each UE from both the BS's permanent resources and winning auctioned spectrum resources. / Ph. D.
12

La communication D2D dans le réseau LTE-Advanced

Feng, Junyi 19 December 2013 (has links) (PDF)
Device-to-device (D2D) communication is a promising new feature in LTE-Advanced networks. It is brought up to enable efficient discovery and communication between proximate devices. With D2D capability, devices in physical proximity could be able to discover each other using LTE radio technology and to communicate with each other via a direct data path. This thesis is concerned with the design, coordination and testing of a hybrid D2D and cellular network. Design requirements and choices in physical and MAC layer functions to support D2D discovery and communication underlaying LTE networks are analyzed. In addition, a centralized scheduling strategy in base station is proposed to coordinate D2D data communication operating in LTE spectrum. The scheduling strategy combines multiple techniques, including mode selection, resource and power allocation, to jointly achieve an overall user performance improvement in a cell. Finally the performances of D2D data communication underlaying LTE system are calibrated in a multi-link scenario via system-level simulation.
13

Optimizing dense wireless networks of MIMO links

Cortes-Pena, Luis Miguel 27 August 2014 (has links)
Wireless communication systems have exploded in popularity over the past few decades. Due to their popularity, the demand for higher data rates by the users, and the high cost of wireless spectrum, wireless providers are actively seeking ways to improve the spectral efficiency of their networks. One promising technique to improve spectral efficiency is to equip the wireless devices with multiple antennas. If both the transmitter and receiver of a link are equipped with multiple antennas, they form a multiple-input multiple-output (MIMO) link. The multiple antennas at the nodes provide degrees-of-freedom that can be used for either sending multiple streams of data simultaneously (a technique known as spatial multiplexing), or for suppressing interference through linear combining, but not both. Due to this trade-off, careful allocation of how many streams each link should carry is important to ensure that each node has enough degrees-of-freedom available to suppress the interference and support its desired streams. How the streams are sent and received and how interference is suppressed is ultimately determined by the beamforming weights at the transmitters and the combining weights at the receivers. Determining these weights is, however, made difficult by their inherent interdependency. Our focus is on unplanned and/or dense single-hop networks, such as WLANs and femtocells, where each single-hop network is composed of an access point serving several associated clients. The objective of this research is to design algorithms for maximizing the performance of dense single-hop wireless networks of MIMO links. We address the problems of determining which links to schedule together at each time slot, how many streams to allocate to each link (if any), and the beamforming and combining weights that support those streams. This dissertation describes four key contributions as follows: - We classify any interference suppression technique as either unilateral interference suppression or bilateral interference suppression. We show that a simple bilateral interference suppression approach outperforms all known unilateral interference suppression approaches, even after searching for the best unilateral solution. - We propose an algorithm based on bilateral interference suppression whose goal is to maximize the sum rate of a set of interfering MIMO links by jointly optimizing which subset of transmitters should transmit, the number of streams for each transmitter (if any), and the beamforming and combining weights that support those streams. - We propose a framework for optimizing dense single-hop wireless networks. The framework implements techniques to address several practical issues that arise when implementing interference suppression, such as the overhead of performing channel measurements and communicating channel state information, the overhead of computing the beamforming and combining weights, and the overhead of cooperation between the access points. - We derive the optimal scheduler that maximizes the sum rate subject to proportional fairness. Simulations in ns-3 show that the framework, using the optimal scheduler, increases the proportionally fair aggregate goodput by up to 165% as compared to the aggregate goodput of 802.11n for the case of four interfering single-hop wireless networks with two clients each.
14

數位網路上多重目標規劃的數學模式 / Mathematical Models of Pareto Optimal Path Selection on All-IP Networks

王嘉宏, Wang, Chia-Hung Unknown Date (has links)
面對通訊與資訊科技的大幅進步,通訊網路正在進行一個巨大的變革,要將電信網路與數據網路整合成一個單一的All-IP網路以支援所有網路應用服務。欲達到整合型網路的理想,仍有許多困難尚待克服,而服務品質問題是其中最關鍵的問題之一。因為受限於封包交換網路之原有的特性,All-IP網路有影響服務品質的三項因素:過長的延遲時間、抖動以及封包遺失。首先,我們利用了達成度函數(achievement function)來處理單位的轉換,使得能夠同時考量此三項不同單位的因素。接著,本文中提出一套方法來解決All-IP網路上端對端(end-to-end)的資源配置及路徑規劃問題。在分配資源時,我們企圖提供一種成比例的公平性給各個不同等級。此公平性的精神是要使得所有網路使用者的滿足程度相當,而非各個不同等級的使用者分配到相同的資源。我們將以預算方式控制端對端品質管理以追求使用者之整體最大滿意程度。 本論文的規劃概念是將網路規劃分成兩個階段。第一階段是在一筆給定的總預算底下,以成比例的方式去分配資源給各個不同等級,並建置網路上的頻寬,使各等級能依其需求拿到適當的頻寬,確保滿足程度相當。 接下來第二階段則是在第一部份已完成的規劃基礎下,做路徑規劃,指派新進入的使用者到一條較好的路徑,在滿足此使用者的延遲時間要求下,使此系統的壅塞程度越小越好。路徑規劃的概念為如何挑選最佳網路路徑,以規劃具服務品質之端對端路徑,並可達到資源之最有效利用。網路營運者將可運用此套方法來調校自身所營運的網路以追求使用者最高滿意度。 / We present an approach for the fair resource allocation problem and QoS routing in All-IP networks that offer multiple services to users. The objective of the optimization problem is to determine the amount of required bandwidth for each link and each class to maximize the sum of the users' utility. In this work, we focus on approaches that, while allocating bandwidth, attempt to provide a proportionally fair treatment of all the competing classes. First, we will show that an achievement function can map different criteria subject to various utility onto a normalized scale. It may be interpreted as a measure of QoS (Quality of Service) on All-IP networks. Using the bandwidth allocation model, we can find a Pareto optimal allocation of bandwidth on the network under a limited available budget. This allocation can provide the so-called proportional fairness to every class, that is, this allocation can provide the similar satisfaction to each user. Next, we present a routing scheme under consideration of the delay. Such an optimal path provides the end-to-end QoS guarantees to each user. Finally, a numerical example is given to illustrate how to solve the fair resource allocation problem and how to modify the nonlinear parts.
15

Practical Deployment Aspects of Cell-Free Massive MIMO Networks

Zaher, Mahmoud January 2023 (has links)
The ever-growing demand of wireless traffic poses a challenge for current cellular networks. Each new generation must find new ways to boost the network capacity and spectral efficiency (SE) per device. A pillar of 5G is massive multiple-input-multiple-output (MIMO) technology. Through utilizing a large number of antennas at each transmitting node, massive MIMO has the ability to multiplex several user equipments (UEs) on the same time-frequency resources via spatial multiplexing. Looking beyond 5G, cell-free massive MIMO has attracted a lot of attention for its ability to utilize spatial macro diversity and higher resilience to interference. The cell-free architecture is based on a large number of distributed access points (APs) jointly serving the UEs within a coverage area without creating artificial cell boundaries. It provides a promising solution that is focused on delivering uniform service quality throughout the mobile network. The main challenges of the cell-free network architecture lie in the computational complexity for signal processing and the huge fronthaul requirements for information exchange among the APs. In this thesis, we tackle some of the inherent problems of the cell-free network architecture by providing distributed solutions to the power allocation and mobility management problems. We then introduce a new method for characterizing unknown interference in wireless networks. For the problem of power allocation, a distributed learning-based solution that provides a good trade-off between SE performance and applicability for implementation in large-scale networks is developed with reduced fronthaul requirements and computational complexity. The problem is divided in a way that enables each AP (or group of APs) to separately decide on the power coefficients to the UEs based on the locally available information at the AP without exchanging information with the other APs, however, still attempting to achieve a network wide optimization objective.  Regarding mobility management, a handover procedure is devised for updating the serving sets of APs and assigned pilot to each UE in a dynamic scenario considering UE mobility. The algorithm is tailored to reduce the required number of handovers per UE and changes in pilot assignment. Numerical results show that our proposed solution identifies the essential refinements since it can deliver comparable SE to the case when the AP-UE association is completely redone. Finally, we developed a new technique based on a Bayesian approach to model the distribution of the unknown interference arising from scheduling variations in neighbouring cells. The method is shown to provide accurate modelling for the unknown interference power and an effective tool for robust rate allocation in the uplink with a guaranteed target outage performance. / Den ständigt växande efterfrågan på trådlös datatrafik är en stor utmaning för dagens mobilnät. Varje ny nätgeneration måste hitta nya sätt att öka den totala kapaciteten och spektraleffektiviteten (SE) per uppkopplad enhet. En pelare i 5G är massiv-MIMO-teknik (multiple-input-multiple-output). Genom att använda ett stort antal antenner på varje mobilmast har massiv MIMO förmågan att kommunicera med flera användarutrustningar (eng. user equipment, UE) på samma tid/frekvensresurser via så kallad rumslig multiplexing. Om man ser bortom 5G-tekniken så har cellfri massiv-MIMO väckt stort intresse tack vare sin förmåga att utnyttja rumslig makrodiversitet för att förbättra täckningen och uppnå högre motståndskraft mot störningar. Den cellfria arkitekturen bygger på att ha ett stort antal distribuerade accesspunkter (AP) som gemensamt serverar UE:erna inom ett täckningsområde utan att dela upp området konstgjorda celler. Detta är en lovande lösning som är fokuserad på att leverera enhetliga datahastigheter i hela mobilnätet. De största forskningsutmaningarna med den cellfria nätverksarkitekturen ligger i beräkningskomplexiteten för signalbehandling och de enorma kraven på fronthaul-kablarna som möjliggör informationsutbyte mellan AP:erna. I den här avhandlingen löser vi några av de grundläggande utmaningarna med den cellfria nätverksarkitekturen genom att tillhandahålla distribuerade algoritmlösningar på problem relaterade till signaleffektreglering och mobilitetshantering. Vi introducerar sedan en ny metod för att karakterisera okända störningar i trådlösa nätverk. När det gäller signaleffektreglering så utvecklas en distribuerad inlärnings-baserad metod som ger en bra avvägning mellan SE-prestanda och tillämpbarhet för implementering i storskaliga cellfria nätverk med reducerade fronthaulkrav och lägre beräkningskomplexitet. Lösningen är uppdelat på ett sätt som gör det möjligt för varje AP (eller grupp av AP) att separat besluta om effektkoefficienterna relaterade till varje UE baserat på den lokalt tillgängliga informationen vid AP:n utan att utbyta information med de andra AP:erna, men ändå försöka uppnå ett nätverksomfattande optimeringsmål. När det gäller mobilitetshantering utformas en överlämningsprocedur som dynamiskt uppdaterar vilken uppsättning av AP:er som servar en viss UE och vilken pilotsekvens som används när den rör sig över täckningsområdet. Algoritmen är skräddarsydd för att minska antalet överlämningar per UE och förändringar i pilottilldelningen. Numeriska resultat visar att vår föreslagna lösning identifierar de väsentliga förfiningarna eftersom den kan leverera jämförbar SE som när AP-UE-associationen görs om helt och hållet. Slutligen utvecklade vi en ny Bayesiansk metod för att modellera den statistiska fördelningen av de okända störningarna som uppstår på grund av schemaläggningsvariationer i närliggande celler. Metoden har visat sig ge en korrekt modell av den okända störningseffekten och är ett effektivt verktyg för robust SE-allokering i upplänken med en garanterad maximal avbrottsnivå. / <p>QC 20230503</p>

Page generated in 0.0905 seconds