• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

I. Exploration of Amphitropic Protein Interactions at the Membrane Interface; II. DNF2—A Plant Protein with Homology to Bacterial PI-PLC Enzymes

He, Tao January 2015 (has links)
Thesis advisor: Mary F. Roberts / Amphitropic proteins, such as the virulence factor phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis, often depend on lipid-specific recognition of target membranes. However, the recognition mechanisms for zwitterionic lipids such as phosphatidylcholine (PC), which is enriched in the outer leaflet of eukaryotic cell membranes, are not well understood. Molecular dynamics (MD) simulation and mutagenesis results strongly indicate that PI-PLC interacts with PC head groups via cation-π interactions with aromatic tyrosine residues, and suggest that cation-π interactions at the interface may be a mechanism for specific lipid recognition by amphitropic and membrane proteins. Aromatic amino acids can not only form cation-π interactions at the interface but also insert into membranes and have hydrophobic interactions with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side-chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring while their enhanced hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C (PI-PLC) variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis PI-PLC identifies those involved in cation-π interactions with PC. Cation-π interactions provide a likely molecular mechanism for BtPI-PLC PC specificity but do not account for its preference for bilayers containing a small fraction of anionic lipids. MD simulations and fluorescence correlation spectroscopy (FCS) vesicle binding measurements of positively charged amino acids as well as surface tyrosine residues are used to formulate a complete model of BtPI-PLC specific binding to mixed anionic phospholipid/PC membrane. DNF2, a new plant protein with homology to bacterial PI-PLC, is confirmed to be the first plant small PI-PLC enzyme that can cleave both PI and glycosylphosphatidylinositol (GPI) anchored proteins. GPI-anchored protein cleavage also confirms that DNF2 plays an important role in symbiosome, the intracellular compartment formed by the plant that contains nitrogen fixing bacteria. / Thesis (PhD) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Studies of regulated membrane trafficking /

Cohen, Alona. January 2008 (has links)
Thesis (Ph. D.)--Cornell University, August, 2008. / Vita. Includes bibliographical references (leaves 164-175).
3

ELUCIDATING BINDING, FUSION AND ENTRY OF HUMAN METAPNEUMOVIRUS

Klimyte, Edita M. 01 January 2016 (has links)
Human metapneumovirus (HMPV) is a respiratory pathogen in the Paramyxoviridae family that infects nearly 100% of the world population. This enveloped RNA virus causes severe viral respiratory disease in infants, the elderly, and immunocompromised patients worldwide. Despite its prevalence and importance to human health, no therapies are available against this pathogen. Entry of paramyxoviruses into host cells generally requires the coordinated activity of the attachment glycoprotein, G, which interacts with a cell receptor, and the fusion glycoprotein, F, which promotes subsequent fusion of viral and cellular membranes. However, HMPV F is the primary viral protein mediating both binding and fusion for HMPV. Previous work that showed HMPV F mediates attachment to heparan sulfate proteoglycans (HSPGs), and some HMPV F fusion activity can be promoted by acidic pH. The work presented here provides significant advances in our understanding of the fusion and binding events during HMPV infection. We demonstrated that low pH promotes fusion in HMPV F proteins from diverse clades, challenging previously reported requirements and identifying a critical residue that enhances low pH promoted fusion. These results support our hypothesis that electrostatic interactions play a key role in HMPV F triggering and further elucidate the complexity of viral fusion proteins. Additionally, we characterized the key features of the binding interaction between HMPV and HSPGs using heparan sulfate mimetics, identifying an important sulfate modification, and demonstrated that these interactions occur at the apical surface of polarized airways tissues. We identified differences in particle binding related to the presence or absence of the HMPV G and SH glycoproteins. Lastly, we characterized paramyxovirus infection in cystic fibrosis bronchial epithelial cells, identifying a potential specific susceptibility to HMPV infection in these individuals. The work presented here contributes to our understanding of HMPV infection, from mechanisms of early events of entry to clinical scenarios.
4

Single Proteins under the Microscope: Conformations, Dynamics and Medicinal Therapies

Liu, Baoxu 20 June 2014 (has links)
We applied single-molecule fluorescence (SMF) methods to probe the properties of individual fluorescent probes, and to characterize the proteins of interest to which these probes were attached. One remarkable advantage of SMF spectroscopy is the ability to investigate heterogeneous subpopulations of the ensemble, which are buried in ensemble averaging in other measurements. Other advantages include the ability to probe the entire dynamic sequences of a single molecule transitioning between different conformational states. For the purpose of having an extended observation of single molecules, while maintaining the native nanoscale surroundings, we developed an improved vesicle preparation method for encapsulating scarce biological samples. SMF investigations revealed that molecules trapped in vesicles exhibit nearly ideal single-emitter behavior, which therefore recommends the vesicle encapsulation for reproducible and reliable SMF studies. Hyperactive Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein contributes significantly to human cancers, such as leukemia and lymphoma. We have proposed a novel therapeutic strategy by designing a cholesterol-based protein membrane anchor (PMA), to tether STAT3 to the cell membrane and thus inhibit unwanted transcription at the cell nucleus. We designed in vitro proof-of-concept experiments by encapsulating STAT3 and PMAs in phospholipid vesicles. The efficiency and the stability of STAT3 anchoring in the lipid membrane were interrogated via quantitative fluorescence imaging and multiparameter SMF spectroscopy. Our in vitro data paved the way for the in vivo demonstration of STAT3 inhibition in live cells, thus demonstrating that PMA-induced protein localization is a conceptually viable therapeutic strategy. The recent discovery of intrinsically disordered proteins (IDPs) highlights important exceptions to the traditional structure-function paradigm. SMF methods are very suited for probing the properties of such highly heterogeneous systems. We studied in detail the effects of electrostatics on the conformational disorder of an IDP protein, Sic1 from yeast, and found that the electrostatic repulsion is a major factor controlling the dimensions of Sic1. Based on our data we also conclude that a rod-like shape seems a better candidate than a random Gaussian chain to describe and predict the behavior of Sic1.
5

Single Proteins under the Microscope: Conformations, Dynamics and Medicinal Therapies

Liu, Baoxu 20 June 2014 (has links)
We applied single-molecule fluorescence (SMF) methods to probe the properties of individual fluorescent probes, and to characterize the proteins of interest to which these probes were attached. One remarkable advantage of SMF spectroscopy is the ability to investigate heterogeneous subpopulations of the ensemble, which are buried in ensemble averaging in other measurements. Other advantages include the ability to probe the entire dynamic sequences of a single molecule transitioning between different conformational states. For the purpose of having an extended observation of single molecules, while maintaining the native nanoscale surroundings, we developed an improved vesicle preparation method for encapsulating scarce biological samples. SMF investigations revealed that molecules trapped in vesicles exhibit nearly ideal single-emitter behavior, which therefore recommends the vesicle encapsulation for reproducible and reliable SMF studies. Hyperactive Signal-Transducer-and-Activator-of-Transcription 3 (STAT3) protein contributes significantly to human cancers, such as leukemia and lymphoma. We have proposed a novel therapeutic strategy by designing a cholesterol-based protein membrane anchor (PMA), to tether STAT3 to the cell membrane and thus inhibit unwanted transcription at the cell nucleus. We designed in vitro proof-of-concept experiments by encapsulating STAT3 and PMAs in phospholipid vesicles. The efficiency and the stability of STAT3 anchoring in the lipid membrane were interrogated via quantitative fluorescence imaging and multiparameter SMF spectroscopy. Our in vitro data paved the way for the in vivo demonstration of STAT3 inhibition in live cells, thus demonstrating that PMA-induced protein localization is a conceptually viable therapeutic strategy. The recent discovery of intrinsically disordered proteins (IDPs) highlights important exceptions to the traditional structure-function paradigm. SMF methods are very suited for probing the properties of such highly heterogeneous systems. We studied in detail the effects of electrostatics on the conformational disorder of an IDP protein, Sic1 from yeast, and found that the electrostatic repulsion is a major factor controlling the dimensions of Sic1. Based on our data we also conclude that a rod-like shape seems a better candidate than a random Gaussian chain to describe and predict the behavior of Sic1.
6

Characterization of the Alzheimer's disease-associated clac protein /

Söderberg, Linda, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.
7

Interactions of perihperal membrane proteins with phosphatidylinositol lipids : insights from molecular dynamics simulations

Naughton, Fiona January 2017 (has links)
Interactions between proteins and membranes are central to many signalling pathways and other cellular processes. Phosphatidylinositol phosphates (PIPs) are a family of lipids often acting as second messengers and targeted by peripheral proteins in these processes. A pipeline was developed combining the molecular dynamics (MD) approaches of umbrella sampling and coarse-grain modelling, and used to quantify and compare the interactions with PIP-containing model membranes of 13 pleckstrin homology (PH) domains, a common lipid-binding domain found in many proteins showing varied affinities and specificities for PIPs. Lipid selectivity generally agreed with previous observations. Several membrane-binding modes were identified, revealing PIP interactions through a secondary site are more common than suggested experimentally and appear to be related to overall affinity. Results suggest that simultaneous binding of multiple PIP lipids is required to achieve the high affinities characteristic of PH domains. Multiscale MD, combining coarse-grain binding simulations and atomistic refinement, was used to investigate PTEN, a tumour suppressor catalysing interconversion of PIPs and associated with many cancers and other disorders. Regions often ignored in previous studies were revealed to favour productive binding, largely via electrostatics. PIP clustering by bound PTEN and membrane insertion in the productive mode were demonstrated. Existence of an N-terminal PIP-binding site was supported, with this region appearing disordered, rather than helical as previously suggested. Changes in interdomain orientation when bound and with the clinically-relevant R173C mutation further suggest the importance of the interdomain interface for productive binding. Together, this work demonstrates the important contributions MD can make towards understanding protein/membrane interactions, particularly in the context of managing the diseases caused by their disruption.
8

Investigation of Microtubule dynamics and novel Microtubule-associated proteins in growth and development of the filamentous fungus, Aspergillus nidulans.

Shukla, Nandini Y. 11 August 2017 (has links)
No description available.
9

Effect of CyaA acylation on its folding and membrane properties / Effet de l’acylation de CyaA sur son repliement et son interaction avec les membranes

Cannella, Sara Elisabetta 27 September 2016 (has links)
L’Adénylate cyclase (CyaA), produite par B. pertussis, agent responsable de la coqueluche, est un des principaux facteurs de virulence de la bactérie. La toxine est une grande protéine multi-domaine qui est synthétisée comme un précurseur inactif, proCyaA. Ce précurseur est converti dans la forme active après une acylation spécifique. Après la sécrétion, la toxine envahir les cellules eucaryotes par un mécanisme unique qui implique la translocation de son domaine catalytique dans le cytosol des cellules eucaryotiques. Cette mécanisme est toujours pas clair et nombreuses questions restent ouvertes. Dans la présente étude, nous avons étudié les propriétés structurales et fonctionnelles des différentes espèces de (pro)CyaA en solution et inséré dans la membrane. Nous avons observé que le repliement de (pro)CyaA dans la forme monomérique dépend de la présence de calcium et de l'acylation post-traductionnelle. En outre, nous avons observé que la présence du calcium améliore fortement la stabilité de la protéine. De plus, nous avons identifié un segment hydrophobe dans CyaA, mais pas dans proCyaA, qui intervient dans les premières étapes du repliement de la protéine. L'analyse macroscopique a révélé que CyaA est plus stable et compacte par rapport à proCyaA. Nous avons aussi observé que les deux toxines sont capables de perméabiliser les membranes in vitro, mais que seulement la toxine monomérique et acyle est capable d'exercer des activités de membranes efficaces dans la cellule (hémolyse, translocation de AC et production de cAMP). Nous proposons que la toxine monomérique est la seul espèce compétent et fonctionnel. / Adenylate cyclase is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whopping cough. The toxin is a huge multi-domain protein synthesized as an inactive precursor, proCyaA, which is converted into the active form upon a specific acylation. Once secreted across the bacterial cell envelope, the toxin invades eukaryotic cells through a unique mechanism that involves the direct translocation of its catalytic domain inside the cytosol of the target cells. This mechanism is still not clear and many questions remain open. In the present study we investigated the structural and functional properties of various (pro)CyaA species in solution and upon membrane-insertion. We found that the (re)folding of CyaA into a monomeric form critically depend upon the presence of calcium and the post-translational acylation. We observed that calcium binding strongly improves the stability of the protein. Moreover we identified a hydrophobic segment in CyaA, but not in proCyaA, which is involved in the early stages of the refolding process. Macroscopic analysis showed that CyaA is more stable and compact as compared to proCyaA. We also observed that both toxins are able to permeabilize membranes in vitro, although only the monomeric and acylated toxin is able to exert efficient membrane activities in cellula (i.e., hemolysis, AC translocation and cAMP production). We propose that the monomeric species is the functional competent and active state and that the acyl chains play not only a structural role but are also essential for the functional activities of the toxin.
10

In Situ Mapping of Membranolytic Protein-membrane Interactions by Combined Attenuated Total Reflection Fourier-transform Infrared Spectroscopy-atomic Force Microscopy (ATR-FTIR-AFM)

Edwards, Michelle 07 December 2011 (has links)
A combined attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR)-atomic force microscopy (AFM) platform was used to visualize and characterize membranolytic protein- and peptide-membrane interactions, allowing spectroscopic details to be correlated with structural features. Modifications to a previous combined platform permitted IR results for physiologically-relevant protein or peptide concentrations as well as provided nanometer-resolution height data for AFM. This combination provides greater insight than individual techniques alone. The interactions of hemolytic sticholysin proteins on a model red blood cell membrane showed evidence of conformational changes associated with a membrane-induced organization. In addition, the examination of a de novo cationic antimicrobial peptide on a model bacterial membrane showed that the peptide adopted a helical structure upon interaction with the membrane, and also provided evidence of membrane disruption and peptide aggregation. These results demonstrate that ATR-FTIR-AFM can be a powerful tool for understanding protein- and peptide-membrane interactions.

Page generated in 0.0531 seconds