• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors modifying the aggregation of atrophin-1 acting in cis and in trans

Hinz, Justyna January 2012 (has links)
Ten polyQ (polyglutamine) diseases constitute a group of hereditary, neurodegenerative, lethal disorders, characterized by neuronal loss and motor and cognitive impairments. The only common molecular feature of polyQ disease-associated proteins is the homopolymeric polyglutamine repeat. The pathological expansion of polyQ tract invariably leads to protein misfolding and aggregation, resulting in formation of the fibrillar intraneuronal deposits (aggregates) of the disease protein. The polyQ-related cellular toxicity is currently attributed to early, small, soluble aggregate species (oligomers), whereas end-stage, fibrillar, insoluble aggregates are considered to be benign. In the complex cellular environment aggregation and toxicity of mutant polyQ proteins can be affected by both the sequences of the corresponding disease protein (factors acting in cis) and the cellular environment (factors acting in trans). Additionally, the nucleus has been suggested to be the primary site of toxicity in the polyQ-based neurodegeneration. In this study, the dynamics and structure of nuclear and cytoplasmic inclusions were examined to determine the intrinsic and extrinsic factors influencing the cellular aggregation of atrophin-1, a protein implicated in the pathology of dentatorubral-pallidoluysian atrophy (DRPLA), a polyQ-based disease with complex clinical features. Dynamic imaging, combined with biochemical and biophysical approaches revealed a large heterogeneity in the dynamics of atrophin-1 within the nuclear inclusions compared with the compact and immobile cytoplasmic aggregates. At least two types of inclusions of polyQ-expanded atrophin-1 with different mobility of the molecular species and ability to exchange with the surrounding monomer pool coexist in the nucleus of the model cell system, neuroblastoma N2a cells. Furthermore, our novel cross-seeding approach which allows for monitoring of the architecture of the aggregate core directly in the cell revealed an evolution of the aggregate core of the polyQ-expanded ATN1 from one composed of the sequences flanking the polyQ domain at early aggregation phases to one dominated by the polyQ stretch in the later aggregation phase. Intriguingly, these changes in the aggregate core architecture of nuclear and cytoplasmic inclusions mirrored the changes in the protein dynamics and physico-chemical properties of the aggregates in the aggregation time course. 2D-gel analyses followed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) were used to detect alterations in the interaction partners of the pathological ATN1 variant compared to the non-pathological ATN1. Based on these results, we propose that the observed complexity in the dynamics of the nuclear inclusions provides a molecular explanation for the enhanced cellular toxicity of the nuclear aggregates in polyQ-based neurodegeneration. / Zehn Polyglutamin-basierte (polyQ) Erkrankungen bilden eine Gruppe von erblichen, neurogenerativen, letalen Krankheiten, die durch neuronalen Zellverlust und motorischen und kognitiven Störungen charakterisiert sind. Die mit polyQ Erkrankungen-assoziierten Proteine enthalten eine repetitive Abfolge der Aminosäure Glutamin (den polyQ-Bereich, der die einzige gemeinsame Sequenz aller polyQ Proteine ist). Durch die pathologische Verlängerung des PolyQ-Bereiches bekommen die polyQ Proteine eine Neigung zu aggregieren, und bilden damit unlösliche, fibrilläre Ablagerungen in Neuronen. Es wird vermutet, dass die sich anfangs bildenden kleinen löslichen Ablagerungsvorstufen (Oligomere) toxisch, und die später gebildeten, unlöslichen fibrillären Aggregate jedoch harmlos sind. Im zellulären Milieu werden Aggregations-Prozess und Toxizität durch die polyQ-flankierenden (benachbarten) Sequenzen des jeweiligen Proteins (in cis agierende Faktoren) und unterschiedliche zelluläre Proteine (in trans agierende Faktoren) beeinflusst. Außerdem kann die nukleare Lokalisation der polyQ Spezies mit verlängertem PolyQ-Bereich ihren toxischen Effekt erhöhen. Die Verlängerung des polyQ-Bereiches im Protein Atrophin-1 (ATN1) über 49 Glutamine hinaus, verursacht Dentatorubro-Pallidoluysische Atrophie (DRPLA), eine progressive Erkrankung, die sich durch Muskelzuckungen, Epilepsie, Ataxie und Demenz äußern kann. In dieser Arbeit wurden die dynamischen Eigenschaften und die Struktur der nuklearen und zytoplasmatischen Aggregate systematisch untersucht, um die Faktoren, die das Aggregations-Verhältnis der Atrophin-1 in cis und in trans beeinflussen zu erkennen. Mittels des mit biochemischen und biophysikalischen Analysen kombinierten Dynamic Imaging, konnte gezeigt werden, dass Aggregate der mutierten ATN1 in vivo, im Säugetier-Zellen Model (Neuroblastoma N2a Zellen), sich von den frühen, löslichen zu später gebildeten unlöslichen Spezies entwickeln. Die Resultate der im Rahmen dieser Arbeit entwickelten Cross-Seeding Methode zeigen, dass das Aggregatcore der früheren Aggregate von den polyQ-Bereich flankierenden Sequenzen kontrolliert wurde, während die Transformation zu unlöslichen Aggregaten von dem expandierten polyQ-Bereich dominiert ist. Außerdem, wie die 2D-Gelelectrophorese und die MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) Analysen beweisen, beeinflusst die Länge des PolyQ-Bereiches die Interaktionen mit zellulären Proteinen. Wir haben auch festgestellt, dass das in nuklearen Aggregaten abgelagerte polyQ-expandierte ATN1 im Vergleich zu den zytoplasmatischen Ablagerungen eine erhöhte Mobilität aufwies. Mindestens zwei Aggregat-Typen mit unterschiedlichen Mobilitäten von mutierten ATN1 koexistieren im Zellkern der N2a Zellen, während im Gegensatz dazu das Protein in den kompakten zytoplasmatischen Aggregaten ausnahmslos immobil erscheint. Dies stellt eine molekulare Erklärung der erhöhten Toxizität der nuklearen ATN1-Aggregate dar.
2

Folding and aggregation of amyloid peptides

Kittner, Madeleine January 2011 (has links)
Aggregation of the Amyloid β (Aβ) peptide to amyloid fibrils is associated with the outbreak of Alzheimer’s disease. Early aggregation intermediates in form of soluble oligomers are of special interest as they are believed to be the major toxic components in the process. These oligomers are of disordered and transient nature. Therefore, their detailed molecular structure is difficult to access experimentally and often remains unknown. In the present work extensive, fully atomistic replica exchange molecular dynamics simulations were performed to study the preaggregated, monomer states and early aggregation intermediates (dimers, trimers) of Aβ(25-35) and Aβ(10-35)-NH2 in aqueous solution. The folding and aggregation of Aβ(25-35) were studied at neutral pH and 293 K. Aβ(25-35) monomers mainly adopt β-hairpin conformations characterized by a β-turn formed by residues G29 and A30, and a β-sheet between residues N27–K28 and I31–I32 in equilibrium with coiled conformations. The β-hairpin conformations served as initial configurations to model spontaneous aggregation of Aβ(25-35). As expected, within the Aβ(25-35) dimer and trimer ensembles many different poorly populated conformations appear. Nevertheless, we were able to distinguish between disordered and fibril-like oligomers. Whereas disordered oligomers are rather compact with few intermolecular hydrogen bonds (HBs), fibril-like oligomers are characterized by the formation of large intermolecular β-sheets. In most of the fibril-like dimers and trimers individual peptides are fully extended forming in- or out-of-register antiparallel β-sheets. A small amount of fibril-like trimers contained V-shaped peptides forming parallel β-sheets. The dimensions of extended and V-shaped oligomers correspond well to the diameters of two distinct morphologies found for Aβ(25-35) fibrils. The transition from disordered to fibril-like Aβ(25-35) dimers is unfavorable but driven by energy. The lower energy of fibril-like dimers arises from favorable intermolecular HBs and other electrostatic interactions which compete with a loss in entropy. Approximately 25 % of the entropic cost correspond to configurational entropy. The rest relates to solvent entropy, presumably caused by hydrophobic and electrostatic effects. In contrast to the transition towards fibril-like dimers the first step of aggregation is driven by entropy. Here, we compared structural and thermodynamic properties of the individual monomer, dimer and trimer ensembles to gain qualitative information about the aggregation process. The β-hairpin conformation observed for monomers is successively dissolved in dimer and trimer ensembles while instead intermolecular β-sheets are formed. As expected upon aggregation the configurational entropy decreases. Additionally, the solvent accessible surface area (SASA), especially the hydrophobic SASA, decreases yielding a favorable solvation free energy which overcompensates the loss in configurational entropy. In summary, the hydrophobic effect, possibly combined with electrostatic effects, yields an increase in solvent entropy which is believed to be one major driving force towards aggregation. Spontaneous folding of the Aβ(10-35)-NH2 monomer was modeled using two force fields, GROMOS96 43a1 and OPLS/AA, and compared to primary NMR data collected at pH 5.6 and 283 K taken from the literature. Unexpectedly, the two force fields yielded significantly different main conformations. Comparison between experimental and calculated nuclear Overhauser effect (NOE) distances is not sufficient to distinguish between the different force fields. Additionally, the comparison with scalar coupling constants suggest that the chosen protonation in both simulations corresponds to a pH lower than in the experiment. Based on this analysis we were unable to determine which force field yields a better description of this system. Dimerization of Aβ(10-35)-NH2 was studied at neutral pH and 300 K. Dimer conformations arrange in many distinct, poorly populated and rather complex alignments or interlocking patterns which are rather stabilized by side chain interactions than by specific intermolecular hydrogen bonds. Similar to Aβ(25-35) dimers, transition towards β-sheet-rich, fibril-like Aβ(10-35) dimers is driven by energy competing with a loss in entropy. Here, transition is mediated by favorable peptide-solvent and solvent-solvent interactions mainly arising from electrostatic interactions. / Die Aggregation des Amyloid β (Aβ) Peptids zu Amyloidfibrillen wird mit dem Ausbruch der Alzheimer Krankheit in Verbindung gebracht. Die toxische Wirkung auf Zellen wird vor allem den zeitigen Intermediaten in Form von löslichen Oligomeren zugeschrieben. Aufgrund deren ungeordneter und flüchtiger Natur kann die molekulare Struktur solcher zeitigen Oligomere oft experimentell nicht aufgelöst werden. In der vorliegenden Arbeit wurden aufwendige atomistische Replica-Exchange-Molekulardynamik-Simulationen durchgeführt, um die molekulare Struktur von Monomeren und Oligomeren der Fragmente Aβ(25-35) und Aβ(10-35)-NH2 in Wasser zu untersuchen. Die Faltung und Aggregation von Aβ(25-35) wurde bei neutralem pH und 293 K untersucht. Monomere dieses Fragments bilden hauptsächlich β-Haarnadelkonformationen im Gleichgewicht mit Knäulstrukturen. Innerhalb der β-Haarnadelkonformationen bilden die Residuen G29 und A30 einen β-turn, während N27–K28 and I31–I32 ein β-Faltblatt bilden. Diese β-Haarnadelkonformationen bildeten den Ausgangspunkt zur Modellierung spontaner Aggregation. Wie zu erwarten, bilden sich eine Vielzahl verschiedener, gering besetzter Dimer- und Trimerkonformationen. Mit Hilfe einer gröberen Einteilung können diese in ungeordnete und fibrillähnliche Oligomere unterteilt werden. Ungeordnete Oligomere bilden kompakte Strukturen, die nur durch wenige intermolekulare Wasserstoffbrückenbindungen (HBB) stabilisiert sind. Typisch für fibrillähnliche Oligomere ist hingegen die Ausbildung großer intermolekularer β-Faltblätter. In vielen dieser Oligomere finden wir antiparallele, in- oder out-of-register β-Faltblätter gebildet durch vollständig ausgestreckte Peptide. Ein kleiner Teil der fibrillähnlichen Trimere bildet parallele, V-förmige β-Faltblätter. Die Ausdehnungen ausgestreckter und V-förmiger Oligomere entspricht in etwa den Durchmessern von zwei verschiedenen, experimentell gefundenen Fibrillmorphologien für Aβ(25-35). Die Umwandlung von ungeordneten zu fibrillähnlichen Aβ(25-35) Dimeren ist energetisch begünstigt, läuft aber nicht freiwillig ab. Fibrillähnliche Dimere haben eine geringere Energie aufgrund günstiger Peptidwechselwirkungen (HBB, Salzbrücken), welche durch den Verlust an Entropie kompensiert wird. Etwa 25 % entsprechen dem Verlust an Konfigurationsentropie. Der restliche Anteil wird einem Verlust an Lösungsmittelentropie aufgrund von hydrophoben und elektrostatischen Effekten zugesprochen. Im Gegensatz zur Umwandlung in fibrillähnliche Dimere, ist die Assoziation von Monomeren oder Oligomeren entropisch begünstigt. Beim Vergleich thermodynamischer Eigenschaften der Monomer-, Dimer- und Trimersysteme zeigt sich im Verlauf der Aggregation, wie erwartet, eine Abnahme der Konfigurationsentropie. Zusätzlich nimmt die dem Lösungsmittel zugängliche Oberfläche (SASA), insbesondere die hydrophobe SASA, ab. In Verbindung damit beobachten wir eine Abnahme der freien Solvatisierungsenergie, welche den Verlust an Konfigurationsentropie kompensiert. Mit anderen Worten, der hydrophobe Effekt in Kombination mit elektrostatischen Wechselwirkungen führt zu einem Ansteigen der Lösungsmittelentropie und begünstigt damit die Aggegation. Die spontane Faltung des Aβ(10-35)-NH2 Monomers wurde für zwei verschiedene Proteinkraftfelder, GROMOS96 43a1 und OPLS/AA, untersucht und mit primären NMR-Daten aus der Literatur, gemessen bei pH 5.6 und 283 K, verglichen. Beide Kraftfelder generieren unterschiedliche Hauptkonformationen. Der Vergleich zwischen experimentellen und berechneten Kern-Overhauser-Effekt (NOE) Abständen ist nicht ausreichend, um zwischen beiden Kraftfeldern zu unterscheiden. Der Vergleich mit Kopplungskonstanten aus Experiment und Simulation zeigt, dass beide Simulationen einem pH-Wert geringer als 5.6 ensprechen. Basierend auf den bisherigen Ergebnissen können wir nicht entscheiden, welches Kraftfeld eine bessere Beschreibung für dieses System liefert. Die Dimerisierung von Aβ(10-35)-NH2 wurde bei neutralem pH und 300 K untersucht. Wir finden eine Vielzahl verschiedener, gering besetzter Dimerstrukturen, welche eher durch Seitenkettenkontakte als durch spezifische HBB stabilisiert sind. Wie bei den Aβ(25-35) Dimeren, ist die Umwandlung zu β-Faltblattreichen, fibrillähnlichen Aβ(10-35) Dimeren energetisch begünstigt, konkurriert aber mit einem Entropieverlust. Die Umwandlung wird in diesem Fall durch elektrostatische Wechselwirkungen zwischen Peptid und Lösungsmittel und innerhalb des Lösungsmittels bestimmt.
3

Huntington's disease

Bernard, Branka 21 January 2009 (has links)
Die Huntington''sche Krankheit (Huntington''s disease, HD) ist eine tödliche neurodegenerative Erkrankung mit einem extensiven Verlust von Neuronen im Striatum. Die Ursache für HD ist eine genetische Mutation, bei der eine CAG-Wiederholungssequenz verlängert wird. Im resultierenden Protein, das Huntingtin (htt) genannt wurde, diese Mutation führt zur Missfaltung und Aggregation von htt. Ich habe untersucht ob die Bildung von htt-Aggregaten die Transkription von Genen dass sie von HD-assoziierten Transkriptionsfaktoren kontrolliert werden, verändert. Zur Untersuchung der Transkription wurden die zu untersuchenden Gene auf cDNA-Mikroarrays aufgebracht und mit RNA, welche aus den Zellen nach der Induktion der Expression des mutierten htt gewonnen wurde, hybridisiert. Es wurden keine systematischen Veränderungen innerhalb der durch spezifische Transkriptionsfaktoren regulierten Gengruppen gefunden. Ich habe auch mehrere mathematische Modelle erstellt, welche die htt-Aggregation und den Zelltod beschreiben. Die Ergebnisse zeigten, dass eine transiente Dynamik im System und die nicht-monotone Reaktion auf Parameteränderungen zu den nicht-intuitiven Ergebnissen bei Behandlungsansätzen, welche die htt-Aggregation beeinflussen, führen könnten. Für den Fall, dass Aggregate die toxische Form von htt sind, zeigten die numerischen Simulationen dass das Einsetzen der Aggregation, welches durch ein Überschießen der Aggregatkonzentration gekennzeichnet ist, am ehesten zum Zelltod führt. Dieses Phänomen wurde "one-shot"-Modell genannt. Es gibt, auch bei HD-Patienten mit gleicher Länge der CAG-Wiederholungssequenz, eine große Varianz des Alters bei Krankheitsausbruch (age of onset, AO). Ich habe ein stochastisches Modell für den neuronalen Zelltod im Striatum entwickelt. Das Modell zeigte, dass ein signifikanter Anteil der nicht erklärbaren Varianz des AO der intrinsischen Dynamik der Neurodegeneration zugeschrieben werden kann. / Huntington''s disease (HD) is a fatal neurodegenerative disorder characterized by a progressive neuronal loss in the striatum of HD patients. HD is caused by a CAG repeat expansion which translates into a polyglutamine stretch at the N-terminus of the huntingtin protein (htt). The polyQ stretch induces misfolding, cleavage and aggregation of htt. To test the hypothesis that the sequestration of transcription factors into the htt aggregates causes transcriptional changes observed in HD models, I compiled lists of genes controlled by the transcription factors associated with HD. These genes were spotted on cDNA microarrays that were later hybridized with RNA extracted from cells expressing a mutant htt fragment. In this study, no systematic changes related to a specific transcription factors were observed. Formation and the accumulation of htt aggregates causes neurotoxicity in different HD model systems. To investigate the consequences of therapeutic strategies targeting aggregation, I derived several mathematical models describing htt aggregation and cell death. The results showed that transient dynamics and the non-monotonic response of cell survival to a change of parameter might lead to the non-intuitive outcome of a treatment that targets htt aggregation. Also, the numerical simulations show that if aggregates are toxic, the onset of aggregation, marked by the overshoot in the concentration of aggregates, is the event most likely to kill the cell. This phenomenon was termed a one-shot model. The principal cause of the variability of the age at onset (AO) is the length of the CAG repeat. Still, there is a great variance in the AO even for the same CAG repeat length. To study the variability of the AO, I developed a stochastic model for clustered neuronal death in the HD striatum. The model showed that a significant part of the unexplained variance can be attributed to the intrinsic stochastic dynamics of neurodegeneration.
4

Charakterisierung und Modifizierung poröser Cellulosepartikel für die flüssige Hochleistungs-Chromatographie und ihr Einsatz zur Untersuchung von Protein-Wechselwirkungen

Wieland, Christoph 01 March 2010 (has links)
Perlcellulose stellt ein interessantes Material für den Einsatz in der wässrigen Größenausschlusschromatgraphie (SEC) dar. Sie ist aufgrund ihrer guten Modifizierbarkeit zudem ein perfektes Ausgangsmaterial für Protein-Aggregationsuntersuchungen. Ein Protein von besonderem praktischem Interesse ist Insulin. Dessen Fehlfaltung und Aggregation verursacht eine Reihe von schwerwiegenden Problemen (z.B. in Drug-Delivery-Systemen). Hierbei erfolgt eine Umwandlung von alpha-Helix- in beta-Faltblatt-Strukturen wobei sich unlösliche Fibrillen bilden. Deren Rückfaltung mit Hilfe fluorierter Alkohole sowie mit fluorierten Nanopartikeln wurde in der Literatur beschrieben. Der Ansatzpunkt dieser Arbeit war es zu untersuchen, ob Fluor auf Oberflächen mit hohem Anteil von Hydroxygruppen eine Rückfaltung von Proteinen wie Insulin bewirken kann. Das Ziel war es, schaltbare stationäre Phasen zu erhalten, mit denen sowohl eine Rückfaltung als auch die Trennung von Proteinen durchgeführt werden können. Zunächst erfolgte die Charakterisierung geeigneter Perlcellulosen, wobei erstmals eine Kombination der „klassischen“ Porosimetrie (Hg-Intrusion, N2-Sorption) mit SAXS und Inverser SEC zur Untersuchung der Porenstruktur von Cellulose angewandt wurde. Es konnte die reversible Schrumpfung der Poren während der Trockungsprozesse beschrieben werden. Die Immobilisierung von Fluor auf der Oberfläche von Cellulosepartikeln erfolgte u.a. durch Pfropfung von fluorierten Acrylaten mittels Cer(IV)-Redoxinitiierung. Es gelang eine homopolymerfreie Pfropfung, wobei es zu keiner Veränderung der Porenstruktur kam. Die Kontrolle der Proteinadsorption auf der modifizierten Oberfläche mittels chemischer Stimuli konnte beschrieben werden. Aggregationsuntersuchungen mittels SEC, DLS und SAXS ergaben, dass fluormodifizierte Perlcellulose keine Verzögerung der Insulinaggregation bewirkt. Jedoch zeigte sich, dass unmodifizierte Perlcellulose eine signifikante Verzögerung der Aggregation bewirken kann. / Porous bead cellulose is an interesting material for the application in aqueous size exclusion chromatography (SEC). Its good modifiability makes it furthermore to a perfect starting material for protein aggregation studies. A protein with huge practical importance is insulin. Misfolding and aggregation of insulin creates serious problems e.g. in drug delivery systems. Thereby it undergoes a change from alpha-helix to beta-sheet structure and forms insoluble fibrils. A back-folding with (toxic) fluorinated alcohols and fluorinated nanoparticles was already shown in literature. The approach for this work was that fluorine (CF3-) on a surface with high hydroxyl-content can induce the back folding of proteins like insulin. The purpose was to get stationary phases that can induce back folding and separation of proteins on a single column. At first a characterization of suitable cellulose beads with focus on different porosimetry methods was done. For the first time a combination of “classical” porosimetry methods (Hg-Intrusion; N2-Sorption) with SAXS and inverse SEC was applied for porous cellulose particles. A reversible shrinking of pores during drying process was shown. Immobilization of fluorine on the surface of cellulose beads was done by grafting of fluorinated acrylates via cer(IV)-redox-initiation and by polymer analogous reaction with fluorinated iodo alkanes. Homopolymer free graft-copolymerization was achieved, whereas no effect on pore structure was observed. The control of protein adsorption on surface by chemical stimuli was shown. Aggregation studies using SEC, DLS and SAXS showed that fluoro-modified cellulose beads do not delay insulin-aggregation due to strong adsorption effects. Though a significant aggregation delay for insulin with unmodified cellulose beads was discovered.
5

Non-canonical small heat shock protein activity in health and disease of C. elegans

Iburg, Manuel 22 February 2021 (has links)
Die erfolgreiche Synthese und Faltung von Proteinen ist eine Voraussetzung der Zellfunktion und ein Versagen der Proteinhomöostase führt zu Krankheit oder Tod. In der Zelle sichern molekulare Chaperone die korrekte Faltung der Proteine oder tragen zur Entsorgung unwiederbringlich fehlgefalteter Proteinsubstrate bei. Unter diesen Chaperonen sind kleine Hitzeschockproteine (sHsp) ein ATP-unabhängiger Teil des Proteostasenetzwerks. In dieser Arbeit habe ich das bisher wenig erforschte sHsp HSP-17 aus C. elegans untersucht. Im Gegensatz zu anderen sHsps zeigte HSP-17 nur eine geringe Aktivität beim Verhindern der Aggregation von Proteinsubstraten. Stattdessen konnte ich in vitro zeigen, dass HSP-17 die Aggregation von Modellsubstraten fördert, was hier für Metazoen-sHsps erstmals gezeigt wurde. HSP-17 kopräzipitiert mit Substraten und modifiziert deren Aggregate möglicherweise. HSP-17 kolokalisiert in vivo mit Aggregaten, und seine aggregationsfördernde Aktivität konnte ich für das physiologische Substrat KIN-19 und heterolog exprimierte polyQ-Peptide validieren. Durch ex vivo Analysen konnte ich zeigen, dass die Aktivität von HSP-17 für die Fitness relevant ist  In einem zweiten Projekt habe ich zur Entwicklung eines neuen Modelles für Aß-Pathologie in C. elegans beigetragen, welches substöchiometrische Markierungen verwendet, um eine zeitnahe Visualisierung der Aß-Aggregation in spezifischen Zelltypen zu ermöglichen. Das Modell spiegelt bekannte Phänotypen der Aß-Proteotoxizität aus Menschen und bestehenden C. elegans Aß-Stämmen wider. Interessanterweise zeigt eine Untergruppe der Neuronen, die IL2-Neuronen, eine höhere Anfälligkeit für die Aggregation und Proteotoxizität von Aß1-42. Eine gezielte Reduktion von Aß1-42 in IL2 Neuronen führt zu einer systemischen Reduktion der Pathologie. Somit bietet das Modell eine neue Plattform, um die Bedeutung molekularer Chaperone, wie z. B. der sHsps, für Amyloidosen zu untersuchen, auch im Hinblick auf menschliche Erkrankungen. / Successful synthesis and folding of proteins is a prerequisite for cellular function and failure of protein homeostasis leads to disease or death. Within the cell, molecular chaperones ensure correct protein folding or aid in the disposal of terminally misfolded protein substrates. Among these chaperones, small heat shock proteins (sHsps) are ATP-independent members of the proteostasis network. In this work, I analyzed the so far under-researched C. elegans sHsp HSP-17. Unlike other sHsps, HSP-17 exhibited only weak activity in preventing aggregation of protein substrates. Instead, I could show in vitro that HSP-17 can promote the aggregation of protein substrates, which is the first demonstration for metazoan sHsps. HSP-17 co-precipitates with substrates and potentially modifies the aggregates.  HSP-17 colocalizes with aggregates and pro-aggregation activity is present in vivo, which I demonstrated for the physiological substrate KIN-19 and heterologously expressed amyloidogenic polyQ peptides. By physiological, biochemical and proteomic analysis I showed that HSP-17 activity is relevant for organismal fitness In a second project, I contributed to the development and characterization of a novel model of Aß pathology in C. elegans. This new AD model employs sub-stoichiometric labeling to allow live visualization of Aß aggregation in distinct cell types. The model mirrors known phenotypes of Aß proteotoxicity in humans and existing C. elegans Aß strains. Interestingly, a subset of neurons, the IL2 neurons, is shown to be more vulnerable to Aß proteotoxicity and targeted depletion of Aß in these neurons systemically ameliorates pathology. Thereby, the model presents a new platform to assess the relevance of molecular chaperones such as sHsps in amyloidosis with a perspective on human disease.
6

Einfluss des Proteinaggregationshemmstoffs anle138b auf Beginn und Verlauf der Amyotrophen Lateralsklerose im transgenen hSOD1-Mausmodell / Influence of the protein aggregation inhibitor anle138b on the beginning and progression of amyotrophic lateral sclerosis in the transgenic hSOD1 mouse model

Thyssen, Stella 24 June 2014 (has links)
No description available.
7

Heat-induced changes in the material properties of cytoplasm

Eßlinger, Anne Hilke 26 June 2023 (has links)
Organisms are frequently exposed to fluctuating environmental conditions and might consequently experience stress. Environmental stress can damage cellular components, which can threaten especially single-celled organisms, such as yeast, as they cannot escape. To survive, cells mount protective stress responses, which serve to preserve cellular components and architecture. Recent findings in yeast show that the stress response upon energy depletion stress involves a gelation of the cytoplasm due to macromolecular protein assembly, characterized by drastic changes in cytoplasmic material properties. Remarkably, the stress-induced cytoplasmic gelation is protective, raising the question whether this could be a common strategy of cells to cope with severe stress. I hypothesized that protein aggregation induced by another common stress, severe heat shock, might cause a similar cytoplasmic gelation in yeast. Furthermore, I hypothesized that the reversibility of cytoplasmic gelation is provided by molecular chaperones, which are known regulators of protein aggregation. In this thesis, I therefore aimed to characterize the changes in the material properties of the cytoplasm upon severe heat shock as well as their underlying causes and how molecular chaperones affect these changes. To characterize heat-induced changes in the material properties of the cytoplasm, I monitored Schizosaccharomyces pombe cells during recovery from severe heat shock using a combination of cell mechanical assays, time-lapse microscopy and single-particle tracking. I found that the cells entered a prolonged growth arrested state upon stress, which coincided with significant cell stiffening and a long-range motion arrest of lipid droplets in the cytoplasm, while smaller cytoplasmic nanoparticles remained mostly mobile. At the same time, a significant fraction of proteins aggregated in the cytoplasm, forming insoluble inclusions such as heat shock granules. After stress cessation, the observed changes were reversed as stiffened cells softened and lipid droplets resumed long-range motion. Cell softening and lipid droplet motion recovery coincided with protein disaggregation. These processes could be delayed by impairing protein disaggregation through genetic perturbation of the molecular chaperone Hsp104, which functions as a protein disaggregase. In contrast, no influence on protein disaggregation or heat-induced cytoplasmic material property changes was detected for the small heat shock protein Hsp16. These results suggest that the cytoplasm gels upon severe heat shock due to protein aggregation and is refluidized during recovery with the help of Hsp104. Remarkably, cells resumed growth only after refluidization of the cytoplasm, suggesting that reversible cytoplasmic gelation may contribute to regulation of the heat-induced growth arrest. In addition, cytoplasmic gelation could potentially preserve cellular architecture during heat shock. Overall, the results from my thesis work indicate that reversible cytoplasmic gelation due to macromolecular protein assembly may be a universal cellular response to severe stress which is associated with a stress-protective growth arrest. A likely stress-specific part of this response is the chaperone-dependent refluidization of the cytoplasm, which might explain the prolonged growth arrest seen upon severe heat shock as compared to other stresses and might allow more time for the repair of heat-induced damage.:Abstract Zusammenfassung Table of contents Figure index List of abbreviations 1 Introduction 1.1 Heat shock affects cellular function and fitness 1.1.1 Cells respond to stress in phases 1.1.2 Heat shock threatens cellular homeostasis and structural integrity 1.1.3 Stress severity determines detrimental effects of heat shock 1.1.4 Heat stress causes protein aggregation 1.1.5 Heat shock granules are functional aggregates in yeast 1.2 The heat shock response protects cellular fitness 1.2.1 Cells change transcription to adapt to stress 1.2.2 Molecular chaperones are important in stress protection 1.2.3 Hsp104 is a protein disaggregase chaperone 1.2.4 Small heat shock proteins modulate protein aggregation 1.2.5 Stress severity determines modules of the heat shock response 1.3 Cytoplasmic material properties change during stress 1.3.1 Cells homeostatically adapt cytoplasmic material properties during stress 1.3.2 The cytoplasm is viscoelastic 1.3.3 Is the cytoplasm a gel? 1.3.4 Stress can induce cytoplasmic gelation 1.4 Research aims 2 Materials and Methods 2.1 S. pombe strains and growth conditions 2.1.1 Growth conditions 2.1.2 Construction of S. pombe strains 2.1.3 S. pombe transformation 2.1.4 S. pombe colony PCR 2.1.5 S. pombe strains used in this thesis 2.2 Plasmids and cloning 2.2.1 Plasmids used in this thesis 2.2.2 Construction of plasmid for fluorescent GEM nanoparticle expression 2.2.3 E. coli transformation 2.2.4 Plasmid purification from E. coli 2.3 S. pombe stress treatments 2.3.1 Heat shock treatment 2.3.2 Osmoadaptation 2.4 Cell biological methods 2.4.1 Viability assay 2.4.2 Growth assay 2.5 Cell bulk mechanical assays 2.5.1 Spheroplasting assay 2.5.2 Atomic force microscopy 2.5.3 Real-time deformability cytometry 2.5.4 RT-DC sample preparation 2.5.5 RT-DC setup and measurements 2.5.6 RT-DC data evaluation 2.6 Microscopy 2.6.1 Microscopy of GEM particles 2.6.2 Fluorescence microscopy of endogenously labeled Pabp-mCherry 2.6.3 Microscopy of µNS particles 2.7 Image analysis 2.7.1 Image analysis of Pabp-mCherry in vivo fluorescence microscopy 2.7.2 Differenced brightfield image analysis 2.7.3 Kymographs 2.8 Single-particle tracking analysis 2.8.1 Particle tracking 2.8.2 Mean squared displacement analysis 2.9 Optical diffraction tomography (ODT) 2.9.1 ODT sample preparation 2.9.2 ODT optical setup and measurements 2.9.3 ODT tomogram reconstruction and quantitative analysis 2.10 Lysis and sedimentation assay 2.10.1 Lysis buffer 2.10.2 S. pombe heat shock treatment and lysis 2.10.3 Sedimentation assay 2.10.4 Protein concentration measurement 2.10.5 SDS-PAGE 2.10.6 Coomassie staining 2.10.7 Western Blot 3 Results 3.1 Physical and chemical conditions affect heat shock survival and heat-induced growth arrest of S. pombe 3.1.1 S. pombe arrests growth during severe heat shock 3.1.2 Heat-induced growth arrest is dose-responsive 3.1.3 Heat-induced growth arrest depends on experimental conditions 3.1.4 Buffer pH and energy source have a strong impact on heat shock survival 3.1.5 Osmoadaptation protects cells during heat shock 3.2 Severe heat shock induces reversible cellular stiffening 3.2.1 Cellular rounding upon cell wall removal is delayed after heat shock 3.2.2 Elastic modulus of S. pombe cells is increased after heat shock 3.2.3 Recovery from heat-induced growth arrest is preceded by cell softening 3.3 Long-range particle dynamics in cytoplasm are abolished after heat shock 3.3.1 Small particle dynamics are largely independent of heat shock treatment 3.3.2 Lipid droplets are confined in space after heat shock 3.4 Cytoplasmic crowding increases during heat shock 3.5 Heat shock induces reversible protein aggregation 3.5.1 Insoluble protein fraction is increased after heat shock 3.5.2 Heat shock granules form reversibly during heat shock 3.5.3 HSG formation and dissolution are correlated with changes in cytoplasmic long-range dynamics 3.6 Molecular chaperones modulate cytoplasmic material property changes during heat stress recovery 3.6.1 Hsp104 but not Hsp16 is required for disaggregation of heat shock granules 3.6.2 Hsp104 but not Hsp16 is required for recovery from heat-induced growth arrest 3.6.3 Hsp104 but not Hsp16 is required for recovery of cytoplasmic long-range dynamics 3.6.4 Hsp104 but not Hsp16 is required for rapid reversal of cellular stiffening which coincides with growth recovery 4 Discussion 4.1 Summary and model 4.2 Which mechanism underlies cell stiffening upon heat shock? 4.2.1 Heat-induced protein aggregation might cause cell stiffening 4.2.2 Heat-induced protein aggregation might lead to cytoplasmic gelation 4.2.3 Many factors could contribute to protein aggregation and cytoplasmic gelation 4.3 The heat-induced growth arrest state is associated with reversible cytoplasmic gelation 4.3.1 Cytoplasmic material property changes mark the severe heat-induced growth arrest state 4.3.2 Is cytoplasmic gelation a common response to severe stress? 4.4 What are the biological consequences of cytoplasmic gelation? 4.4.1 Cytoplasmic gelation might obstruct processes that require motion of large structures 4.4.2 Is cytoplasmic gelation upon heat shock protective? 4.5 Heat shock recovery involves the chaperone-mediated refluidization of the cytoplasm 4.5.1 Cytoplasmic refluidization is required for growth recovery 4.5.2 Stress tolerance is marked by enhanced reversibility of cytoplasmic gelation 4.5.3 The protein disaggregase chaperone Hsp104 regulates the reversal of heat-induced cytoplasmic material property changes 4.6 Conclusion References Acknowledgements Publications and Contributions 5 Erklärung entsprechend §5.5 der Promotionsordnung

Page generated in 0.2567 seconds