• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 11
  • Tagged with
  • 32
  • 30
  • 28
  • 28
  • 24
  • 24
  • 24
  • 23
  • 10
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Technical Feasibility of MR-Integrated Proton Therapy: Beam Deflection and Image Quality

Schellhammer, Sonja 03 June 2019 (has links)
Es wird erwartet, dass die Integration der Magnetresonanztomografie (MRT) in die Protonentherapie die Treffgenauigkeit bei der Strahlentherapie für Krebserkrankungen deutlich verbessern wird. Besonders für Tumoren in beweglichen Organen des Thorax oder des Abdomens könnte die MRT-integrierte Protonentherapie (MRiPT) eine Synchronisierung der Bestrahlung mit der Tumorposition ermöglichen, was zu einer verminderten Normalgewebsdosis und weniger Nebenwirkungen führen könnte. Bis heute ist solch eine Integration jedoch aufgrund fehlender Studien zu potenziellen gegenseitigen Störeinflüssen dieser beiden Systeme nicht vollzogen worden. Diese Arbeit widmete sich zwei solcher Störeinflüsse, und zwar der Ablenkung des Protonenstrahls im Magnetfeld des MRT- Scanners, und umgekehrt, dem Einfluss der elekromagnetischen Felder der Protonentherapieanlage und des Protonenstrahls selbst auf die MRT-Bilder. Obwohl vorangegangene Studien den derzeitigen Konsens aufgezeigt haben, dass die Trajektorie eines abgebremsten Protonenstrahls im homogenen Phantom in einem transversalen Magnetfeld vorhersagbar ist, zeigte sich im quantitativen Vergleich der publizierten Modelle, der im ersten Teil dieser Arbeit vorgestellt wurde, dass die Vorhersagen dieser Modelle nur für eine begrenzte Anzahl von Kombinationen aus Magnetfeldstärke und Protonenenergie übereinstimmen. Die Schwächen bestehender analytischer Modelle wurden deshalb analysiert und quantifiziert. Kritische Annahmen und die mangelnde Anwendbarkeit auf realistische, d.h. inhomogene Magnetfeldstärken und Patientengeometrien wurden als Hauptprobleme identifiziert. Um diese zu überwinden, wurde ein neues semianalytisches Modell namens RAMDIM entwickelt. Es wurde gezeigt, dass dieses auf realistischere Fälle anwendbar und genauer ist als existierende analytische Modelle und dabei schneller als Monte-Carlo-basierte Teilchenspursimulationen. Es wird erwartet, dass dieses Modell in der MRiPT Anwendung findet zur schnellen und genauen Ablenkungsberechnung, zur Betrahlungsplanoptimierung und bei der MRT-geführten Strahlnachführung. In einem zweiten Schritt wurde die magnetfeldinduzierte Protonenstrahlablenkung in einem gewebeähnlichen Material durch Filmdosimetrie erstmalig gemessen und mit Monte-Carlo-Simulationen verglichen. In einem transversalen Magnetfeld einer Flussdichte von 0,95 T wurde experimentell gezeigt, dass die laterale Versetzung des Bragg-Peaks für Protonenenergien zwischen 80 und 180 MeV in PMMA zwischen 1 und 10 mm liegt. Die Retraktion des Bragg-Peaks war ≤ 0,5 mm. Es wurde gezeigt, dass die gemessene Versetzung des Bragg-Peaks innerhalb von 0,8 mm mit Monte-Carlo-basierten Vorhersagen übereinstimmt. Diese Ergebnisse weisen darauf hin, dass die Protonenstrahlablenkung durch Monte-Carlo-Simulationen genau vorhersagbar ist und damit der Realisierbarkeit der MRiPT nicht im Wege steht. Im zweiten Teil dieser Arbeit wurde erstmalig ein MRT-Scanner in eine Protonenstrahlführung integriert. Hierfür wurde ein offener Niederfeld-MRT-Scanner am Ende einer statischen Forschungsstrahlführung einer Protonentherapieanlage platziert. Die durch das statische Magnetfeld des MRT-Scanners hervorgerufene Strahlablenkung wurde bei der Ausrichtung des MRT-Scanners berücksichtigt. Die sequenzabhängigen, veränderlichen Gradientenfelder hatten keinen messbaren Einfluss auf das transversale Strahlprofil hinter dem MRT-Scanner. Die Magnetfeldhomogenität des Scanners lag innerhalb der Herstellervorgaben und zeigte keinen relevanten Einfluss von Rotationen der Protonengantry im benachbarten Bestrahlungsraum. Eine magnetische Abschirmung war zum gleichzeitigen Betrieb des MRT-Scanners und der Protonentherapieanlage nicht notwendig. Dies beweist die Machbarkeit gleichzeitiger Bestrahlung und Bildgebung in einem ersten MRiPT Aufbau. Die MRT-Bildqualität des Aufbaus wurde darauffolgend anhand eines angepassten Standardprotokolls aus Spin-Echo- und Gradienten-Echo-Sequenzen quantifiziert und es wurde gezeigt, dass die Bildqualität sowohl ohne als auch mit gleichzeitiger Bestrahlung hinreichend ist. Alle bestimmten geometrischen Parameter stimmten mit den physikalischen Abmessungen des verwendeten Phantoms innerhalb eines Bildpixels überein. Wie es für Niederfeld-MRT-Scanner üblich ist, war das Signal-Rausch-Verhältnis (SNR) der MRT-Bilder gering, was im Vergleich zu den Standardkriterien zu einer geringen Bildhomogenität und zu einem hohen Geisterbildanteil im Bild führte. Außerdem wurde aufgrund von Unsicherheiten in der Hochfrequenzkalibrierung des MRT-Scanners eine starke Schwankung der vertikalen Phantomposition mit einem Interquartilabstand von bis zu 1,5 mm beobachtet. T2*-gewichtete Gradientenechosequenzen zeigten zudem aufgrund von Magnetfeldinho- mogenitäten relevante ortsabhängige Bildverzerrungen. Es wurde gezeigt, dass die meisten Bildqualitätsparameter mit und ohne gleichzeitige Betrahlung äquivalent sind. Es wurde jedoch ein signifikanter Betrahlungseinfluss in Form von einer vertikalen Bildverschiebung und einer Verminderung des SNR beobachtet, die durch eine Änderung im Magnetfeld des MRT-Scanners erklärt werden können, welche durch zu diesem Feld parallel ausgerichtete Komponenten im Fernfeld der Strahlführungsmagneten hervorgerufen wird. Während das verminderte SNR vermutlich irrelevant ist (Dif- ferenz im Median ≤ 1,5), ist die sequenzabhängige Bildverschiebung (Differenz im Median bis zu 0,7 mm) nicht immer vernachlässigbar. Diese Ergebisse zeigen, dass die MRT-Bilder durch gleichzeitige Bildgebung nicht schwerwiegend verfälscht werden, dass aber eine dedizierte Optimierung der Hochfrequenzkalibrierung und der MRT-Bildsequenzen notwendig ist. Im letzten Teil der Arbeit wurde gezeigt, dass ein stromabhängiger Einfluss des Protonenstrahls auf MRT-Bilder eines Wasserphantoms durch zwei verschiedene MRT-Sequenzen messbar gemacht und zur Reichweiteverifikation genutzt werden kann. Der Effekt war in verschiedenen Flüssigkeiten, jedoch nicht in viskosen und festen Materialen, nachweisbar und wurde auf Hitzekonvektion zurückgeführt. Es wird erwartet, dass diese Methode in der MRiPT für Konstanztests der Protonenreichweite bei der Maschinenqualitätssicherung nützlich sein wird. Zusammenfassend hat diese Arbeit die Genauigkeit der Vorhersage der Strahlablenkung quantifiziert und verbessert, sowie Potenzial und Realisierbarkeit einer gleichzeitigen MRT-Bildgebung und Protonenbestrahlung gezeigt. Die weitere Entwicklung eines ersten MRiPT-Prototyps ist demnach gerechtfertigt.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLII / The integration of magnetic resonance imaging (MRI) into proton therapy is expected to strongly increase the targeting accuracy in radiation therapy for cancerous diseases. Especially for tumours situated in mobile organs in the thorax and abdomen, MR-integrated proton therapy (MRiPT) could enable the synchronisation of irradiation to the tumour position, resulting in less dose to normal tissue and reduced side effects. However, such an integration has been hindered so far by a lack of scientific studies on the potential mutual interference between the two components. This thesis was dedicated to two of these sources of interference, namely the deflection of the proton beam by the magnetic field of the MR scanner and, vice versa, alterations of the MR image induced by the electromagnetic fields of the proton therapy facility and by the beam itself. Although previous work has indicated that there is general consensus that the trajectory of a slowing down proton beam in a homogeneous phantom inside a transverse magnetic field is predictable, a quantitative comparison of the published methods, as presented in the first part of this thesis, has shown that predictions of different models only agree for certain proton beam energies and magnetic flux densities. Therefore, shortcomings of previously published analytical methods have been analysed and quantified. The inclusion of critical assumptions and the lack of applicability to realistic, i.e. non-uniform, magnetic flux densities and patient anatomies have been identified as main problems. To overcome these deficiencies, a new semi-analytical model called RAMDIM has been developed. It was shown that this model is both applicable to more realistic setups and less assumptive than existing analytical approaches, and faster than Monte Carlo based particle tracking simulations. This model is expected to be useful in MRiPT for fast and accurate deflection estimations, treatment plan optimisation, and MR-guided beam tracking. In a second step, the magnetic field-induced proton beam deflection has been measured for the first time in a tissue-mimicking medium by film dosimetry and has been compared against Monte Carlo simulations. In a transverse magnetic field of 0.95 T, it was experimentally shown that the lateral Bragg peak displacement ranges between 1 mm and 10 mm for proton energies between 80 and 180 MeV in PMMA. Range retraction was found to be ≤ 0.5 mm. The measured Bragg peak displacement was shown to agree within 0.8 mm with Monte Carlo simulations. These results indicate that proton beam deflection in a homogeneous medium is accurately predictable for intermediate proton beam energies and magnetic flux densities by Monte Carlo simulations and therefore not impeding the feasibility of MRiPT. In the second part of this thesis, an MR scanner has been integrated into a proton beam line for the first time. For this purpose, an open low-field MR scanner has been placed at the end of a fixed horizontal proton research beam line in a proton therapy facility. The beam deflection induced by the static magnetic field of the scanner was taken into account for alignment of the beam and the FOV of the scanner. The pulse sequence-dependent dynamic gradient fields did not measurably affect the transverse beam profile behind the MR scanner. The MR magnetic field homogeneity was within the vendor’s specifications and not relevantly influenced by the rotation of the proton gantry in the neighbouring treatment room. No magnetic field compensation system was required for simultaneous operation of the MR scanner and the proton therapy system. These results proof that simultaneous irradiation and imaging is feasible in an in-beam MR setup. The MR image quality of the in-beam MR scanner was then quantified by an adapted standard protocol comprising spin and gradient echo imaging and shown to be acceptable both with and without simultaneous proton beam irradiation. All geometrical parameters agreed with the mechanical dimensions of the used phantom within one pixel width. As common for low-field MR scanners, the signal-to-noise ratio (SNR) of the MR images was low, which resulted in a low image uniformity and a high ghosting ratio in comparison to the standardised test criteria. Furthermore, a strong fluctuation of the vertical phantom position due to uncertainties in the pre-scan frequency calibration was observed, with an interquartile range of up to 1.5 mm. T2*-weighted gradient echo images showed relevant nonuniform deformations due to magnetic field inhomogeneities. Most image quality parameters were shown to be equivalent with and without simultaneous proton beam irradiation. However, a significant influence of simultaneous irradiation was observed as a shift of the vertical phantom position and a decrease in the SNR, both of which can be explained by a change in the B0 field of the MR scanner induced by components of the fringe field of the beam line magnets directed parallel to B0 . While the decrease in SNR is not expected to be relevant (median differences were within 1.5 ), the sequence-dependent phantom shift (median differences of up to 0.7 mm) can become non-negligible. These results show that the MR images are not severely distorted by simultaneous irradiation, but a dedicated optimisation of the pre-scan RF calibration and the MR sequences is required for MRiPT. Lastly, a current-dependent influence of the proton beam on the MR image was shown to be measurable in water in two different MR sequences, which allowed for range verification measurements. The effect was observed in different liquids but not in highly viscose and solid materials, and most probably induced by heat convection. This method is expected to be useful in MRiPT for consistency tests of the proton range during machine-specific quality assurance. In conclusion, this work has improved and quantified the accuracy of beam deflection predictions and shown the feasibility and potential of in-beam MR imaging, justifying further research towards a first MRiPT prototype.:List of Figures v List of Tables vii 1 General Introduction 1 2 State of the Art: Proton Therapy and Magnetic Resonance Imaging 3 2.1 Proton Therapy 4 2.1.1 Physical Principle 4 2.1.2 Beam Delivery 7 2.1.3 Motion Management and the Role of Image Guidance 10 2.2 Magnetic Resonance Imaging 14 2.2.1 Physical Principle 14 2.2.2 Image Generation by Pulse Sequences 18 2.2.3 Image Quality 21 2.3 MR-Guided Radiotherapy 24 2.3.1 Offline MR Guidance 24 2.3.2 On-line MR Guidance 25 2.4 MR-Integrated Proton Therapy 28 2.4.1 Aims of this Thesis 32 3 Magnetic Field-Induced Beam Deflection and Bragg Peak Displacement 35 3.1 Analytical Description 36 3.1.1 Review of Analytical Models 36 3.1.2 New Model Formulation 41 3.1.3 Evaluation of Analytical and Numerical Models 44 3.1.4 Discussion 51 3.2 Monte Carlo Simulation and Experimental Verification 54 3.2.1 Verification Setup 54 3.2.2 Monte Carlo Simulation 56 3.2.3 Experimental Verification 60 3.2.4 Discussion 61 3.3 Summary 63 4 Integrated In-Beam MR System: Proof of Concept 65 4.1 Integration of a Low-Field MR Scanner and a Static Research Beamline 65 4.1.1 Proton Therapy System 66 4.1.2 MR Scanner 66 4.1.3 Potential Sources of Interference 67 4.1.4 Integration of Both Systems 68 4.2 Beam and Image Quality in the Integrated Setup 70 4.2.1 Beam Profile 70 4.2.2 MR Magnetic Field Homogeneity 72 4.2.3 MR Image Quality - Qualitative In Vivo and Ex Vivo Test 74 4.2.4 MR Image Quality - Quantitative Phantom Tests 77 4.3 Feasibility of MRI-based Range Verification 86 4.3.1 MR Sequences 86 4.3.2 Proton Beam Parameters 88 4.3.3 Target Material Dependence 91 4.3.4 Discussion 92 4.4 Summary 96 5 Discussion and Future Perspectives 99 6 Summary/Zusammenfassung 105 6.1 Summary 105 6.2 Zusammenfassung 108 Bibliography I Supplementary Information XXIX A Beam Deflection: Experimental Measurements XXIX A.1 Setup XXIX A.2 Film Handling and Evaluation XXX A.3 Uncertainty Estimation XXX B Beam Deflection: Monte Carlo Simulations XXXIII B.1 Magnetic Field Model XXXIII B.2 Uncertainty Estimation XXXIV C Integrated MRiPT Setup XXXVI C.1 Magnetic Field Map XXXVI C.2 Sequence Parameters XXXVI C.3 Image Quality Parameters XLII C.4 Range Verification Sequences XLII
22

Evaluierung eines Detektionssystems für prompte Gammastrahlung zur Behandlungskontrolle bei klinischen Protonentherapiebestrahlungen

Berthold, Jonathan 13 November 2023 (has links)
Die Protonentherapie zeichnet sich durch eine konformale und fokussierte Tumorbestrahlung aus, die es ermöglicht, gesundes Gewebe besser zu schonen als bei der konventionellen Strahlentherapie. Dieses Potential wird jedoch durch Unsicherheiten bei der Vorhersage der Protonenreichweite im Gewebe oder durch anatomische Veränderungen über den Verlauf der Therapie eingeschränkt. In der vorliegenden Arbeit wurde daher der klinische Nutzen eines Reichweiteverifikationssystems auf Grundlage von Prompt-Gamma-Imaging (PGI) zur Behandlungskontrolle untersucht. Dafür wurden Messungen mit einem PGI-System während Prostata- und Kopf-Hals-Tumor-Bestrahlungen durchgeführt und retrospektiv ausgewertet. Einerseits konnte dabei mittels PGI die Genauigkeit verschiedener Methoden zur Reichweitevorhersage überprüft werden. Es zeigte sich, dass die 2019 klinisch eingeführte Methode zur Reichweitevorhersage (DirectSPR) nicht von der mit PGI gemessenen Protonenreichweite in Prostata-Tumor-Bestrahlungen abweicht, wodurch die Reduktion der auf DirectSPR basierenden Reichweiteunsicherheiten unabhängig bestätigt werden konnte. Andererseits konnte die Detektionsfähigkeit von PGI bei der Erkennung relevanter und nicht relevanter anatomischer Veränderungen in applizierten Bestrahlungsfeldern nachgewiesen werden. Insbesondere wurde für die feldweise Klassifizierung der Prostata-Bestrahlungen eine Sensitivität und Spezifität von 74% bzw. 79% festgestellt. Damit konnte in dieser Dissertation erstmals systematisch das klinische Anwendungspotential eines Systems zur PGI-Reichweiteverifikation gezeigt werden. Als zusätzliche Untersuchung wurde in einer Kollaboration mit dem Massachusetts General Hospital zum ersten Mal ein Vergleich zwischen zwei verschiedenen, auf prompter Gammastrahlung basierenden Systemen zur Reichweiteverifikation durchgeführt. Dazu wurde ein standardisiertes Studienprotokoll etabliert, welches die Vergleichbarkeit und die klinische Implementierung von Reichweiteverifikationssystemen generell unterstützen könnte.:1 Einleitung 2 Strahlentherapie mit Protonen 2.1 Physikalische Grundlagen der Protonentherapie 2.2 Behandlungsablauf in der Protonentherapie 2.2.1 Bildgebung zur Therapieplanung 2.2.2 Bestrahlungsplanung 2.2.3 Strahlapplikation 2.3 Genauigkeit in der Protonentherapie 2.3.1 Ursachen für Behandlungs- und Reichweiteunsicherheiten 2.3.2 Aktueller Stand der Behandlungs- und Reichweiteverifikation 3 Methodik der Reichweiteverifikation mittels Prompt-Gamma-Bildgebung (PGI) 3.1 Funktionsprinzip der PGI-Schlitzkamera 3.2 Datenaufnahme und -verarbeitung 3.2.1 Detektoraufbau und Signalaufnahme 3.2.2 PGI-Simulation und Bestimmung der Reichweiteabweichung 3.3 Charakterisierung des PGI-Prototyps 3.3.1 Kalibrierung des Systems 3.3.2 Positionierungspräzision 3.4 Überblick zur PRIMA-Studie 3.5 Experimentelle Studien zur PGI-Simulationsgenauigkeit 3.5.1 Abhängigkeit vom PGI-Sichtfeld und der Protonenenergie 3.5.2 Validierung der erweiterten Simulationssoftware 3.5.3 Abhängigkeit von der Tumorentität 3.5.4 Schlussfolgerungen 4 Validierung der CT-basierten Reichweitevorhersage mittels PGI 4.1 Konzept der Validierung 4.2 Gesamtabschätzung der Validierungsunsicherheit 4.3 Ergebnisse der Validierung 4.4 Diskussion 5 Detektionsfähigkeit anatomischer Veränderungen mittels PGI 5.1 Prinzipieller Aufbau der Studie 5.2 Grundwahrheit auf Basis von CT- und Dosisinformationen 5.2.1 Manuelle Klassifizierung 5.2.2 Klassifizierung auf Grundlage von integrierten Tiefendosisprofilen 5.2.3 Ergebnis der Etablierung einer CT-basierten Grundwahrheit 5.3 Etablierung einer Klassifikation auf Basis von PGI-Daten 5.3.1 Verarbeitung der PGI-Daten mittels Cluster-Algorithmus 5.3.2 Definition von spot- oder clusterbasierten Klassifikationsmodellen 5.4 Ergebnisse der PGI-Detektionsfähigkeit 5.4.1 Auswertung für Patienten mit Prostata-Tumor 5.4.2 Auswertung für Patienten mit Tumoren im Kopf-Hals-Bereich 5.5 Diskussion 6 Genauigkeit zweier Reichweiteverifikationsmethoden – bizentrischer Vergleich 6.1 Material und Methoden 6.1.1 Bildgebung 6.1.2 Bestrahlungsplanung 6.1.3 Durchführung und Auswertung 6.2 Ergebnisse 6.3 Diskussion 7 Zusammenfassung 8 Summary / Proton therapy is a conformal and focused irradiation of the tumor, which allows for a better sparing of healthy tissue than with conventional radiotherapy. However, this potential is limited by uncertainties from the proton range prediction in the patient or anatomical changes over the course of the treatment. Therefore, in this work, the clinical benefit of a range verification system based on the prompt-gamma-imaging (PGI) method for treatment verification was investigated. For this purpose, measurements were carried out with a PGI system during prostate and head and neck cancer irradiations and evaluated retrospectively. On the one hand, PGI was used to review the accuracy of several range prediction methods. The results showed that a specific method for range prediction (DirectSPR), which was clinically introduced in 2019, does not deviate from the PGI-measured proton range in prostate cancer irradiations. This means that the reduction of the range uncertainties with DirectSPR could be independently confirmed. On the other hand, the detection capability of PGI in identifying relevant and non-relevant anatomical changes in delivered treatment fields was demonstrated. In particular, for the fieldwise classification of prostate irradiations a sensitivity and specificity of 74% and 79% was determined, respectively. Thus, the clinical potential of a PGI range verification system was for the first time systematically demonstrated in this thesis. Furthermore, in a collaboration with the Massachusetts General Hospital a first-time comparison of two different range verification systems based on prompt gamma radiation was conducted. Therefore, a standardized study protocol was established, which could generally foster the comparability and clinical implementation of range verification systems.:1 Einleitung 2 Strahlentherapie mit Protonen 2.1 Physikalische Grundlagen der Protonentherapie 2.2 Behandlungsablauf in der Protonentherapie 2.2.1 Bildgebung zur Therapieplanung 2.2.2 Bestrahlungsplanung 2.2.3 Strahlapplikation 2.3 Genauigkeit in der Protonentherapie 2.3.1 Ursachen für Behandlungs- und Reichweiteunsicherheiten 2.3.2 Aktueller Stand der Behandlungs- und Reichweiteverifikation 3 Methodik der Reichweiteverifikation mittels Prompt-Gamma-Bildgebung (PGI) 3.1 Funktionsprinzip der PGI-Schlitzkamera 3.2 Datenaufnahme und -verarbeitung 3.2.1 Detektoraufbau und Signalaufnahme 3.2.2 PGI-Simulation und Bestimmung der Reichweiteabweichung 3.3 Charakterisierung des PGI-Prototyps 3.3.1 Kalibrierung des Systems 3.3.2 Positionierungspräzision 3.4 Überblick zur PRIMA-Studie 3.5 Experimentelle Studien zur PGI-Simulationsgenauigkeit 3.5.1 Abhängigkeit vom PGI-Sichtfeld und der Protonenenergie 3.5.2 Validierung der erweiterten Simulationssoftware 3.5.3 Abhängigkeit von der Tumorentität 3.5.4 Schlussfolgerungen 4 Validierung der CT-basierten Reichweitevorhersage mittels PGI 4.1 Konzept der Validierung 4.2 Gesamtabschätzung der Validierungsunsicherheit 4.3 Ergebnisse der Validierung 4.4 Diskussion 5 Detektionsfähigkeit anatomischer Veränderungen mittels PGI 5.1 Prinzipieller Aufbau der Studie 5.2 Grundwahrheit auf Basis von CT- und Dosisinformationen 5.2.1 Manuelle Klassifizierung 5.2.2 Klassifizierung auf Grundlage von integrierten Tiefendosisprofilen 5.2.3 Ergebnis der Etablierung einer CT-basierten Grundwahrheit 5.3 Etablierung einer Klassifikation auf Basis von PGI-Daten 5.3.1 Verarbeitung der PGI-Daten mittels Cluster-Algorithmus 5.3.2 Definition von spot- oder clusterbasierten Klassifikationsmodellen 5.4 Ergebnisse der PGI-Detektionsfähigkeit 5.4.1 Auswertung für Patienten mit Prostata-Tumor 5.4.2 Auswertung für Patienten mit Tumoren im Kopf-Hals-Bereich 5.5 Diskussion 6 Genauigkeit zweier Reichweiteverifikationsmethoden – bizentrischer Vergleich 6.1 Material und Methoden 6.1.1 Bildgebung 6.1.2 Bestrahlungsplanung 6.1.3 Durchführung und Auswertung 6.2 Ergebnisse 6.3 Diskussion 7 Zusammenfassung 8 Summary
23

Nuclear methods for real-time range verification in proton therapy based on prompt gamma-ray imaging

Hueso González, Fernando 07 June 2016 (has links)
Accelerated protons are excellent candidates for treating several types of tumours. Such charged particles stop at a defined depth, where their ionisation density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimises the damage to normal tissue compared to photon therapy. Nonetheless, inherent range uncertainties cast doubts on the irradiation of tumours close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of proton over photon therapy and limits its ultimate aspirations. Prompt gamma rays, a by-product of the irradiation that is correlated to the dose deposition, are reliable signatures for the detection of range deviations and even for three-dimensional in vivo dosimetry. In this work, two methods for Prompt Gamma-ray Imaging (PGI) are investigated: the Compton camera (Cc) and the Prompt Gamma-ray Timing (PGT). Their applicability in a clinical scenario is discussed and compared. The first method aspires to reconstruct the prompt gamma ray emission density map based on an iterative imaging algorithm and multiple position sensitive gamma ray detectors. These are arranged in scatterer and absorber plane. The second method has been recently proposed as an alternative to collimated PGI systems and relies on timing spectroscopy with a single monolithic detector. The detection times of prompt gamma rays encode essential information about the depth-dose profile as a consequence of the measurable transit time of ions through matter. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and OncoRay, detector components are characterised in realistic radiation environments as a step towards a clinical Cc. Conventional block detectors deployed in commercial Positron Emission Tomography (PET) scanners, made of Cerium-doped lutetium oxyorthosilicate - Lu2SiO5:Ce (LSO) or Bismuth Germanium Oxide - Bi4Ge3O12 (BGO) scintillators, are suitable candidates for the absorber of a Cc due to their high density and absorption efficiency with respect to the prompt gamma ray energy range (several MeV). LSO and BGO block detectors are compared experimentally in clinically relevant radiation fields in terms of energy, spatial and time resolution. On a different note, two BGO block detectors (from PET scanners), arranged as the BGO block Compton camera (BbCc), are deployed for simple imaging tests with high energy prompt gamma rays produced in homogeneous Plexiglas targets by a proton pencil beam. The rationale is to maximise the detection efficiency in the scatterer plane despite a moderate energy resolution. Target shifts, increase of the target thickness and beam energy variation experiments are conducted. Concerning the PGT concept, in a collaboration among OncoRay, HZDR and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen) with several detectors and heterogeneous phantoms is performed. The sensitivity of the method to range shifts is investigated, the robustness against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterised for different proton energies. With respect to the material choice for the absorber of the Cc, the BGO scintillator closes the gap with respect to the brighter LSO. The reason behind is the high energies of prompt gamma rays compared to the PET scenario, which increase significantly the energy, spatial and time resolution of BGO. Regarding the BbCc, shifts of a point-like radioactive source are correctly detected, line sources are reconstructed, and one centimetre proton range deviations are identified based on the evident changes of the back projection images. Concerning the PGT experiments, for clinically relevant doses, range differences of five millimetres in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to two millimetres are detectable. Experimental data are well reproduced by analytical modelling. The Cc and the PGT are ambitious approaches for range verification in proton therapy based on PGI. Intensive detector characterisation and tests in clinical facilities are mandatory for developing robust prototypes, since the energy range of prompt gamma rays spans over the MeV region, not used traditionally in medical applications. Regarding the material choice for the Cc: notwithstanding the overall superiority of LSO, BGO catches up in the field of PGI. It can be considered as a competitive alternative to LSO for the absorber plane due to its lower price, higher photoabsorption efficiency, and the lack of intrinsic radioactivity. The results concerning the BbCc, obtained with relatively simple means, highlight the potential application of Compton cameras for high energy prompt gamma ray imaging. Nevertheless, technical constraints like the low statistics collected per pencil beam spot (if clinical currents are used) question their applicability as a real-time and in vivo range verification method in proton therapy. The PGT is an alternative approach, which may have faster translation into clinical practice due to its lower price and higher efficiency. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype, that may detect significant range deviations for the strongest beam spots. The experimental results emphasise the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry.:1 Introduction 1.1 Proton therapy 1.1.1 The beginnings 1.1.2 Essential features 1.1.3 Advantages and drawbacks 1.2 Range uncertainties and their consequences 1.3 Range verification methods 1.4 Prompt gamma-ray imaging 1.4.1 Passive collimation 1.4.2 Active collimation 1.4.3 Correlation to dose 1.5 Aim of this work 2 Compton camera 2.1 Theoretical background 2.1.1 Compton formula and Klein-Nishina cross section 2.1.2 Detection principle 2.1.3 Intersection of cone surface and plane 2.1.4 Practical considerations 2.2 Motivation 2.3 Goals 2.4 Materials 2.4.1 Scintillator properties 2.4.2 Block detector properties 2.4.3 Electronics and data acquisition 2.4.4 High efficiency Compton camera setup 2.5 Experimental setup 2.5.1 Accelerators 2.5.2 Detector setup 2.5.3 Trigger regime 2.6 Methods 2.6.1 Energy calibration 2.6.2 Spatial calibration 2.6.3 Time calibration 2.6.4 Error analysis 2.6.5 Systematic measurement program 2.7 Results – absorber choice 2.7.1 Energy resolution 2.7.2 Spatial resolution 2.7.3 Time resolution 2.8 Discussion – absorber choice 2.9 Results – BbCc setup 2.10 Discussion – BbCc setup 3 Prompt gamma-ray timing 3.1 Theoretical background 3.1.1 Detection principle 3.1.2 Kinematics 3.1.3 Detector model 3.1.4 Quantitative assessment 3.2 Goals 3.3 Materials 3.3.1 Detectors 3.3.2 Electronics 3.3.3 Accelerators 3.4 Methods 3.4.1 Detector and module settings 3.4.2 Proton bunch phase stability 3.4.3 Proton bunch time structure 3.4.4 Systematic measurement program 3.4.5 Data acquisition rate 3.4.6 Data analysis 3.4.7 Modelling of PGT spectra 3.5 Results 3.5.1 Intrinsic detector time resolution 3.5.2 Illustrative energy over time spectra 3.5.3 Proton bunch phase stability 3.5.4 Proton bunch time structure 3.5.5 Systematic measurement program 3.6 Discussion 3.7 Conclusions 4 Discussion 4.1 Detector load, event throughput and spot duration 4.2 Comparison of PGI systems 4.3 Summary 4.4 Zusammenfassung Bibliography / Beschleunigte Protonen sind ausgezeichnete Kandidaten für die Behandlung von diversen Tumorarten. Diese geladenen Teilchen stoppen in einer bestimmten Tiefe, bei der die Ionisierungsdichte maximal ist. Da die deponierte Dosis hinter der distalen Kante sehr klein ist, minimiert die Protonentherapie den Schaden an normalem Gewebe verglichen mit der Photonentherapie. Inhärente Reichweitenunsicherheiten stellen jedoch die Bestrahlung von Tumoren in der Nähe von Risikoorganen in Frage und führen zur Anwendung von konservativen Sicherheitssäumen. Dadurch werden die potentiellen Vorteile der Protonen- gegenüber der Photonentherapie sowie ihre letzten Ziele eingeschränkt. Prompte Gammastrahlung, ein Nebenprodukt der Bestrahlung, welche mit der Dosisdeposition korreliert, ist eine zuverlässige Signatur um Reichweitenunterschiede zu detektieren und könnte sogar für eine dreidimensionale in vivo Dosimetrie genutzt werden. In dieser Arbeit werden zwei Methoden für Prompt Gamma-ray Imaging (PGI) erforscht: die Compton-Kamera (CK) und das Prompt Gamma-ray Timing (PGT)-Konzept. Des Weiteren soll deren Anwendbarkeit im klinischen Szenario diskutiert und verglichen werden. Die erste Methode strebt nach der Rekonstruktion der Emissionsdichtenverteilung der prompten Gammastrahlung und basiert auf einem iterativen Bildgebungsalgorithmus sowie auf mehreren positionsempfindlichen Detektoren. Diese werden in eine Streuer- und Absorberebene eingeteilt. Die zweite Methode ist vor Kurzem als eine Alternative zu kollimierten PGI Systemen vorgeschlagen worden, und beruht auf dem Prinzip der Zeitspektroskopie mit einem einzelnen monolithischen Detektor. Die Detektionszeiten der prompten Gammastrahlen beinhalten entscheidende Informationen über das Tiefendosisprofil aufgrund der messbaren Durchgangszeit von Ionen durch Materie. Am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und OncoRay werden Detektorkomponenten in realistischen Strahlungsumgebungen als ein Schritt zur klinischen CK charakterisiert. Konventionelle Blockdetektoren, welche in kommerziellen Positronen-Emissions-Tomographie (PET)-Scannern zum Einsatz kommen und auf Cer dotiertem Lutetiumoxyorthosilikat - Lu2SiO5:Ce (LSO) oder Bismutgermanat - Bi4Ge3O12 (BGO) Szintillatoren basieren, sind geeignete Kandidaten für den Absorber einer CK wegen der hohen Dichte und Absorptionseffizienz im Energiebereich von prompten Gammastrahlen (mehrere MeV). LSO- und BGO-Blockdetektoren werden in klinisch relevanten Strahlungsfeldern in Bezug auf Energie-, Orts- und Zeitauflösung verglichen. Weiterhin werden zwei BGO-Blockdetektoren (von PET-Scannern), angeordnet als BGO Block Compton-Kamera (BBCK), benutzt, um die Bildgebung von hochenergetischen prompten Gammastrahlen zu untersuchen, die in homogenen Plexiglas-Targets durch einen Protonen-Bleistiftstrahl emittiert werden. Die Motivation hierfür ist, die Detektionseffizienz der Streuerebene zu maximieren, wobei jedoch die Energieauflösung vernachlässigt wird. Targetverschiebungen, sowie Änderungen der Targetdicke und der Teilchenenergie werden untersucht. In einer Kollaboration zwischen OncoRay, HZDR and IBA, wird der erste Test des PGT-Konzepts an einem klinischen Protonenbeschleuniger (Westdeutsches Protonentherapiezentrum Essen) mit mehreren Detektoren und heterogenen Phantomen durchgeführt. Die Sensitivität der Methode hinsichtlich Reichweitenveränderungen wird erforscht. Des Weiteren wird der Einfluss von Untergrund und Stabilität des Zeitprofils des Strahlenbündels untersucht, sowie die Zeitverschmierung des Bündels für verschiedene Protonenenergien charakterisiert. Für die Materialauswahl für den Absorber der CK ergibt sich, dass sich BGO dem lichtstärkeren LSO Szintillator angleicht. Der Grund dafür sind die höheren Energien der prompten Gammastrahlung im Vergleich zum PET Szenario, welche die Energie-, Orts- und Zeitauflösung von BGO stark verbessern. Anhand von offensichtlichen Änderungen der Rückprojektionsbilder zeigt sich, dass mit der BBCK Verschiebungen einer punktförmigen radioaktiven Quelle erfolgreich detektiert, Linienquellen rekonstruiert und Verschiebungen der Protonenreichweite um einen Zentimeter identifiziert werden. Für die PGT-Experimente können mit einem einzigen Detektor Reichweitenunterschiede von fünf Millimetern für definierte heterogene Targets bei klinisch relevanten Dosen detektiert werden. Dies wird durch den numerischen Vergleich der Spektrumform ermöglicht. Bei größerer Ereigniszahl können Reichweitenunterschiede von bis zu zwei Millimetern detektiert werden. Die experimentellen Daten werden durch analytische Modellierung wiedergegeben. Die CK und das PGT-Konzept sind ambitionierte Ansätze zur Verifizierung der Reichweite in der Protonentherapie basierend auf PGI. Intensive Detektorcharakterisierung und Tests an klinischen Einrichtungen sind Pflicht für die Entwicklung geeigneter Prototypen, da der Energiebereich prompter Gammastrahlung sich über mehrere MeV erstreckt, was nicht dem Normbereich der traditionellen medizinischen Anwendungen entspricht. Im Bezug auf die Materialauswahl der CK wird ersichtlich, dass BGO trotz der allgemeinen Überlegenheit von LSO für die Anwendung im Bereich PGI aufholt. Wegen des niedrigeren Preises, der höheren Photoabsorptionseffizienz und der nicht vorhandenen Eigenaktivität erscheint BGO als eine konkurrenzfähige Alternative für die Absorberebene der CK im Vergleich zu LSO. Die Ergebnisse der BBCK, welche mit relativ einfachen Mitteln gewonnen werden, heben die potentielle Anwendung von Compton-Kameras für die Bildgebung prompter hochenergetischer Gammastrahlen hervor. Trotzdem stellen technische Beschränkungen wie die mangelnde Anzahl von Messereignissen pro Bestrahlungspunkt (falls klinische Ströme genutzt werden) die Anwendbarkeit der CK als Echtzeit- und in vivo Reichweitenverifikationsmethode in der Protonentherapie in Frage. Die PGT-Methode ist ein alternativer Ansatz, welcher aufgrund der geringeren Kosten und der höheren Effizienz eine schnellere Umsetzung in die klinische Praxis haben könnte. Ein Protonenbunchmonitor, höherer Detektordurchsatz und eine quantitative Reichweitenrekonstruktion sind die weiteren Schritte in Richtung eines klinisch anwendbaren Prototyps, der signifikante Reichweitenunterschiede für die stärksten Bestrahlungspunkte detektieren könnte. Die experimentellen Ergebnisse unterstreichen das Potential dieser Reichweitenverifikationsmethode an einem klinischen Bleistiftstrahl und lassen diesen neuartigen Ansatz als eine vielversprechende Alternative auf dem Gebiet der in vivo Dosimetrie erscheinen.:1 Introduction 1.1 Proton therapy 1.1.1 The beginnings 1.1.2 Essential features 1.1.3 Advantages and drawbacks 1.2 Range uncertainties and their consequences 1.3 Range verification methods 1.4 Prompt gamma-ray imaging 1.4.1 Passive collimation 1.4.2 Active collimation 1.4.3 Correlation to dose 1.5 Aim of this work 2 Compton camera 2.1 Theoretical background 2.1.1 Compton formula and Klein-Nishina cross section 2.1.2 Detection principle 2.1.3 Intersection of cone surface and plane 2.1.4 Practical considerations 2.2 Motivation 2.3 Goals 2.4 Materials 2.4.1 Scintillator properties 2.4.2 Block detector properties 2.4.3 Electronics and data acquisition 2.4.4 High efficiency Compton camera setup 2.5 Experimental setup 2.5.1 Accelerators 2.5.2 Detector setup 2.5.3 Trigger regime 2.6 Methods 2.6.1 Energy calibration 2.6.2 Spatial calibration 2.6.3 Time calibration 2.6.4 Error analysis 2.6.5 Systematic measurement program 2.7 Results – absorber choice 2.7.1 Energy resolution 2.7.2 Spatial resolution 2.7.3 Time resolution 2.8 Discussion – absorber choice 2.9 Results – BbCc setup 2.10 Discussion – BbCc setup 3 Prompt gamma-ray timing 3.1 Theoretical background 3.1.1 Detection principle 3.1.2 Kinematics 3.1.3 Detector model 3.1.4 Quantitative assessment 3.2 Goals 3.3 Materials 3.3.1 Detectors 3.3.2 Electronics 3.3.3 Accelerators 3.4 Methods 3.4.1 Detector and module settings 3.4.2 Proton bunch phase stability 3.4.3 Proton bunch time structure 3.4.4 Systematic measurement program 3.4.5 Data acquisition rate 3.4.6 Data analysis 3.4.7 Modelling of PGT spectra 3.5 Results 3.5.1 Intrinsic detector time resolution 3.5.2 Illustrative energy over time spectra 3.5.3 Proton bunch phase stability 3.5.4 Proton bunch time structure 3.5.5 Systematic measurement program 3.6 Discussion 3.7 Conclusions 4 Discussion 4.1 Detector load, event throughput and spot duration 4.2 Comparison of PGI systems 4.3 Summary 4.4 Zusammenfassung Bibliography
24

Integration magnetresonanztomographischer und computertomographischer Daten mit isotropen Voxeln in die Protonenbestrahlungsplanung bei okularen Tumoren

Lemke, Arne-Jörn 12 November 2001 (has links)
Die Bestrahlungstherapie von Aderhautmelanomen mit der Protonentherapie stellt ein sehr präzises Behandlungsverfahren dar, welches hohe Ansprüche an die zugrundliegende Bildgebung stellt. Die Magnetresonanztomographie (MRT) und Computertomographie (CT) scheinen prinzipiell in der Lage, mit geeigneten Oberflächenspulen bzw. angepaßter Untersuchungstechnik diese Ansprüche zu erfüllen. Ziel der Arbeit ist die Bereitstellung und Überprüfung eines bildgebenden Systems, das einerseits die diagnostischen und differentialdiagnostischen Aufgaben für die Differenzierung und das Staging von Aderhautmelanomen erfüllt und andererseits als Grundlage der Bestrahlungsplanung dienen kann. Erstrebenswert ist dabei die Erstellung von Schnittbildern bestehend aus isotropen Voxeln, d.h. Voxeln mit identischer Kantenlänge, mit der Magnetresonanztomographie (MRT) und der Computertomographie (CT). Zur Differenzierung der unterschiedlichen Tumorentitäten wurden verschiedene Untersuchungen mit zum Teil großen Patientenkollektiven durchgeführt und histologisch und klinisch korreliert bzw. verifiziert. Dabei konnte das MR-morphologische Erscheinungsbild der relevanten Erkrankungen studiert werden. Die Genauigkeit der MR-gestützten Tumorvolumetrie wurde in vitro im Tierversuch und in vivo am Patientenauge überprüft. Zur Überprüfung der Genauigkeit der MR-Bildgebung mit isotropen Voxeln wurden unterschiedliche Spulen getestet und verschiedene Phantomuntersuchungen durchgeführt. Entsprechend wurde auch die CT evaluiert. Mit der digitalen Bildfusion wurden die MRT- und die CT-Daten in einen gemeinsamen Datensatz überführt, der sowohl zur Bestimmung der Genauigkeit beider Verfashren als auch als Basis zur Bestrahlungsplanung verwendet werden konnte. Mit einer optimierten Untersuchungstechnik konnten Schnittbilder auf der Basis von CT und MRT zur Verfügung gestellt werden, die eine präzise Planung der Protonenbestrahlung beim Aderhautmelanom ermöglichen. / The radiation therapy of uveal melanomas using proton therapy is a very precise therapy procedure, that makes high demands on the underlying imaging modalities. In general magnetic resonance imaging (MRI) and computed tomography (CT) have the potential to fulfill these criteria using suited surface coils and optimized imaging techniques, respectively. Purpose of the investigations was the preparation and evaluation of an imaging system, that allows diagnosis and differetial diagnosis of uveal melanomas including staging on the one hand. On the other hand it should be the base for high precision radiation therapy planning. The preparation of images with isotropic voxels, i.e. the edges of the voxels have identical size, is desirable with both magnetic resonance imaging (MRI) and computed tomography (CT). Several examinations on large patient groups were performed for the differentiation of different tumor entities and compared with clinical and histopathological outcome. The precision of the MR-based tumor volumetry was evaluated with animal studies in vitro and patient eyes in vivo. The MR-imaging with isotropic voxels was evaluated using several surface coils and phantom examinations. Comparable examinations were performed regarding CT. Digital image fusion of CT and MRI data sets was used to evaluate the precision of both modalities and for planning of radiation therapy. Using optimized examination techniques both CT and especially MRI are suitable for a precise proton therapy planning of uveal melanoma.
25

Automatic classification of treatment-deviation sources in proton therapy using prompt-gamma-imaging information

Khamfongkhruea, Chirasak 24 September 2021 (has links)
Prompt-gamma imaging (PGI) was proposed in the 2000s as a promising in vivo range-verification method to maintain the physical advantage of proton beams by reducing unwanted range-uncertainties. Recently, PGI with a slit camera has been successfully implemented in clinical application. Despite its high accuracy and sensitivity to range deviation being shown in several studies, the clinical benefits of PGI have not yet been investigated. Hence, to fully exploit the advantages of PGI, this thesis aims to investigate the feasibility of PGI-based range verification for the automatic classification of treatment deviations and differentiation of relevant from non-relevant changes in the treatment of head-and-neck (H&N) tumors. In the first part of this thesis, the four most common types of treatment deviations in proton therapy (PT) were investigated regarding their PGI signature and by considering clinically relevant and non-relevant scenarios. A heuristic decision tree (DT) model was iteratively developed. To gain understanding of the specific signature of the error sources, different levels of geometrical complexities were explored, from simple to complex. At the simplest level, a phantom with homogeneous density was used to distinguish range-prediction and setup errors. Next, in the intermediate complexity level, a phantom with heterogeneous density was used to inspect the additional error scenarios of anatomical changes. Finally, real patient CT scans were used to investigate the relevance of changes based on clinical constraints. In the final model, a five-step filtering approach was used during pre-processing to select reliable pencil-beam-scanning spots for range verification. In this study, five features extracted from the filtered PGI data were used to classify the treatment deviation. The model is able distinguish four introduced scenarios into six classes as follows: (1) overestimation of range prediction, (2) underestimation of range prediction, (3) setup error with larger air gap, (4) setup error with smaller air gap, (5) anatomical change, and (6) non-relevant change. To ensure the application was effective, independent patient CT datasets were used to test the model. The results yielded an excellent performance of the DT classifier, with high accuracy, sensitivity, and specificity of 96%, 100%, and 85.7%, respectively. According to these findings, this model can sensitively detect treatment deviations in PT based on simulated PGI data. In the second part of this work, an alternative approach based on machine learning (ML) was taken to automatically classify the error sources. In the first stage, the two approaches were compared, using the same features as well as the same training and test datasets. The results show that the ML approach was slightly better than the heuristic DT approach in terms of accuracy. However, the performance of both approaches was excellent for the individual scenarios. Thus, these results confirm that the PGI-based data classification with five features can be applied to detect individual sources of treatment deviation in PT. In the second stage, there was an investigation of more complex and more realistic combinations of error scenarios, which was out of the scope of the DT approach. The results demonstrated that the performance of the ML-based classifiers declined in general. Furthermore, the additional features of the PG shift did not substantially improve the performance of the classifiers. As a consequence, these findings mark important issues for future research. Potentially, usage of the spatial information from the spot-based PGI data and more complex techniques such as deep learning may improve the performance of classifiers with respect to scenarios with multiple error sources. However, regardless of this, it is recommended that these findings be confirmed and validated in simulations under measurement-like conditions or with real PG measurements of H&N patients themselves. Moreover, this classification model could eventually be tested with other body sites and entities in order to assess its compatibility and adaptation requirements. In summary, this study yielded promising results regarding the automatic classification of treatment-deviation sources and the differentiation of relevant and non-relevant changes in H&N-tumor treatment in PT with PGI data. This simulation study marks an important step towards fully automated PGI-based proton-range verification, which could contribute to closing the treatment-workflow loop of adaptive therapy by supporting clinical decision-making and, ultimately, improving clinical PT.:1 Introduction 2 Background 2.1 Proton therapy 2.1.1 Rationale for proton therapy 2.1.2 Uncertainties and their mitigation 2.2 In vivo range-verification techniques 2.2.1 Range probing 2.2.2 Proton tomography 2.2.3 Magnetic resonance imaging 2.2.4 Ionoacoustic detection 2.2.5 Treatment-activated positron-emission tomography imaging 2.2.6 Prompt-gamma based detection 3 Prompt-gamma imaging with a knife-edged slit camera 3.1 Current state-of-the-art 3.2 Prompt-gamma camera system 3.3 Data acquisition and analysis 4 Error-source classification using heuristic decision tree approach 4.1 Study design 4.1.1 Case selection 4.1.2 Investigated scenarios 4.1.3 Prompt-gamma simulation and range shift determination 4.2 Development of the model 4.2.1 First-generation model 4.2.2 Second-generation model 4.2.3 Third-generation model 4.3 Model testing 4.4 Discussion: decision-tree model 5 Error-source classification using a machine-learning approach 5.1 Machine learning for classification 5.1.1 Support-vector-machine algorithm 5.1.2 Ensemble algorithm – random forest 5.1.3 Logistic-regression algorithm 5.2 Study design 5.2.1 Case selection 5.2.2 Feature selection 5.3 Model generation 5.4 Model testing 5.5 Discussion 6 Summary/ Zusammenfassung Bibliography Appendix List of Figures List of Tables List of Abbreviations
26

Detektionsmethoden für Gammastrahlung in der therapeutischen Medizin mit CdZnTe-Detektoren

Weinberger, David 06 April 2018 (has links)
CdZnTe-Detektoren, zur direkten Messung von Gammastrahlung, die bei der Behandlung mit beschleunigten Teilchen entsteht, besitzen das Potential eine Reichweitenkontrolle zu ermöglichen und die Strahlendosis zu erfassen. Jedoch stellt die Identifizierung einzelner, energetisch nahe beieinander liegenden Photonenenergien, bei einem solchen Volumendetektor eine besondere Herausforderung dar. Die vorliegende Arbeit beschäftigt sich mit der Entwicklung von Methoden zur Korrektur der Signalformen am Volumenhalbleiter CdZnTe und der damit verbundenen Verbesserung der Energie- und Zeitinformation des Detektors. Dies ist wichtig für den Einsatz in der therapeutischen Medizin mit beschleunigten Teilchen, da Ladungsträger durch Gammastrahlung in unterschiedlichen Tiefen des Detektors generiert werden und einen tiefenabhängigen Fehler in der Detektorgenauigkeit erzeugen. / CdZnTe detectors, used for the direct measurement of gamma radiation generated during the treatment with accelerated particles, have the potential to provide a range control and to detect the radiation dose. However, the identification of individual energetically close photon energies in such a volume detector is a particular challenge. The present work deals with the development of methods for correcting the signal forms of the CdZnTe and the associated improvement of the energy and time information of the detector This is important for use in accelerated particle medicine because charge carriers are generated by gamma radiation at different depths of the detector and produce a depth dependent error in detector accuracy.
27

Instrumentation of CdZnTe detectors for measuring prompt gamma-rays emitted during particle therapy

Födisch, Philipp 12 May 2017 (has links)
Background: The irradiation of cancer patients with charged particles, mainly protons and carbon ions, has become an established method for the treatment of specific types of tumors. In comparison with the use of X-rays or gamma-rays, particle therapy has the advantage that the dose distribution in the patient can be precisely controlled. Tissue or organs lying near the tumor will be spared. A verification of the treatment plan with the actual dose deposition by means of a measurement can be done through range assessment of the particle beam. For this purpose, prompt gamma-rays are detected, which are emitted by the affected target volume during irradiation. Motivation: The detection of prompt gamma-rays is a task related to radiation detection and measurement. Nuclear applications in medicine can be found in particular for in vivo diagnosis. In that respect the spatially resolved measurement of gamma-rays is an essential technique for nuclear imaging, however, technical requirements of radiation measurement during particle therapy are much more challenging than those of classical applications. For this purpose, appropriate instruments beyond the state-of-the-art need to be developed and tested for detecting prompt gamma-rays. Hence the success of a method for range assessment of particle beams is largely determined by the implementation of electronics. In practice, this means that a suitable detector material with adapted readout electronics, signal and information processing, and data interface must be utilized to solve the challenges. Thus, the parameters of the system (e.g. segmentation, time or energy resolution) can be optimized depending on the method (e.g. slit camera, time-of-flight measurement or Compton camera). Regardless of the method, the detector system must have a high count rate capability and a large measuring range (>7 MeV). For a subsequent evaluation of a suitable method for imaging, the mentioned parameters may not be restricted by the electronics. Digital signal processing is predestined for multipurpose tasks, and, in terms of the demands made, the performance of such an implementation has to be determined. Materials and methods: In this study, the instrumentation of a detector system for prompt gamma-rays emitted during particle therapy is limited to the use of a cadmium zinc telluride (CdZnTe, CZT) semiconductor detector. The detector crystal is divided into an 8x8 pixel array by segmented electrodes. Analog and digital signal processing are exemplarily tested with this type of detector and aims for application of a Compton camera to range assessment. The electronics are implemented with commercial off-the-shelf (COTS) components. If applicable, functional units of the detector system were digitalized and implemented in a field-programmable gate array (FPGA). An efficient implementation of the algorithms in terms of timing and logic utilization is fundamental to the design of digital circuits. The measurement system is characterized with radioactive sources to determine the measurement dynamic range and resolution. Finally, the performance is examined in terms of the requirements of particle therapy with experiments at particle accelerators. Results: A detector system based on a CZT pixel detector has been developed and tested. Although the use of an application-specific integrated circuit is convenient, this approach was rejected because there was no circuit available which met the requirements. Instead, a multichannel, compact, and low-noise analog amplifier circuit with COTS components has been implemented. Finally, the 65 information channels of a detector are digitized, processed and visualized. An advanced digital signal processing transforms the traditional approaches of nuclear electronics in algorithms and digital filter structures for an FPGA. With regard to the characteristic signals (e.g. varying rise times, depth-dependent energy measurement) of a CZT pixel detector, it could be shown that digital pulse processing results in a very good energy resolution (~2% FWHM at 511 keV), as well as permits a time measurement in the range of some tens of nanoseconds. Furthermore, the experimental results have shown that the dynamic range of the detector system could be significantly improved compared to the existing prototype of the Compton camera (~10 keV..7 MeV). Even count rates of ~100 kcps in a high-energy beam could be ultimately processed with the CZT pixel detector. But this is merely a limit of the detector due to its volume, and not related to electronics. In addition, the versatility of digital signal processing has been demonstrated with other detector materials (e.g. CeBr3). With foresight on high data throughput in a distributed data acquisition from multiple detectors, a Gigabit Ethernet link has been implemented as data interface. Conclusions: To fully exploit the capabilities of a CZT pixel detector, a digital signal processing is absolutely necessary. A decisive advantage of the digital approach is the ease of use in a multichannel system. Thus with digitalization, a necessary step has been done to master the complexity of a Compton camera. Furthermore, the benchmark of technology shows that a CZT pixel detector withstands the requirements of measuring prompt gamma-rays during particle therapy. The previously used orthogonal strip detector must be replaced by the pixel detector in favor of increased efficiency and improved energy resolution. With the integration of the developed digital detector system into a Compton camera, it must be ultimately proven whether this method is applicable for range assessment in particle therapy. Even if another method is more convenient in a clinical environment due to practical considerations, the detector system of that method may benefit from the shown instrumentation of a digital signal processing system for nuclear applications.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung / Hintergrund: Die Bestrahlung von Krebspatienten mit geladenen Teilchen, vor allem Protonen oder Kohlenstoffionen, ist mittlerweile eine etablierte Methode zur Behandlung von speziellen Tumorarten. Im Vergleich mit der Anwendung von Röntgen- oder Gammastrahlen hat die Teilchentherapie den Vorteil, dass die Dosisverteilung im Patienten präziser gesteuert werden kann. Dadurch werden um den Tumor liegendes Gewebe oder Organe geschont. Die messtechnische Verifikation des Bestrahlungsplans mit der tatsächlichen Dosisdeposition kann über eine Reichweitenkontrolle des Teilchenstrahls erfolgen. Für diesen Zweck werden prompte Gammastrahlen detektiert, die während der Bestrahlung vom getroffenen Zielvolumen emittiert werden. Fragestellung: Die Detektion von prompten Gammastrahlen ist eine Aufgabenstellung der Strahlenmesstechnik. Strahlenanwendungen in der Medizintechnik finden sich insbesondere in der in-vivo Diagnostik. Dabei ist die räumlich aufgelöste Messung von Gammastrahlen bereits zentraler Bestandteil der nuklearmedizinischen Bildgebung, jedoch sind die technischen Anforderungen der Strahlendetektion während der Teilchentherapie im Vergleich mit klassischen Anwendungen weitaus anspruchsvoller. Über den Stand der Technik hinaus müssen für diesen Zweck geeignete Instrumente zur Erfassung der prompten Gammastrahlen entwickelt und erprobt werden. Die elektrotechnische Realisierung bestimmt maßgeblich den Erfolg eines Verfahrens zur Reichweitenkontrolle von Teilchenstrahlen. Konkret bedeutet dies, dass ein geeignetes Detektormaterial mit angepasster Ausleseelektronik, Signal- und Informationsverarbeitung sowie Datenschnittstelle zur Problemlösung eingesetzt werden muss. Damit können die Parameter des Systems (z. B. Segmentierung, Zeit- oder Energieauflösung) in Abhängigkeit der Methode (z.B. Schlitzkamera, Flugzeitmessung oder Compton-Kamera) optimiert werden. Unabhängig vom Verfahren muss das Detektorsystem eine hohe Ratenfestigkeit und einen großen Messbereich (>7 MeV) besitzen. Für die anschließende Evaluierung eines geeigneten Verfahrens zur Bildgebung dürfen die genannten Parameter durch die Elektronik nicht eingeschränkt werden. Eine digitale Signalverarbeitung ist für universelle Aufgaben prädestiniert und die Leistungsfähigkeit einer solchen Implementierung soll hinsichtlich der gestellten Anforderungen bestimmt werden. Material und Methode: Die Instrumentierung eines Detektorsystems für prompte Gammastrahlen beschränkt sich in dieser Arbeit auf die Anwendung eines Cadmiumzinktellurid (CdZnTe, CZT) Halbleiterdetektors. Der Detektorkristall ist durch segmentierte Elektroden in ein 8x8 Pixelarray geteilt. Die analoge und digitale Signalverarbeitung wird beispielhaft mit diesem Detektortyp erprobt und zielt auf die Anwendung zur Reichweitenkontrolle mit einer Compton-Kamera. Die Elektronik wird mit seriengefertigten integrierten Schaltkreisen umgesetzt. Soweit möglich, werden die Funktionseinheiten des Detektorsystems digitalisiert und in einem field-programmable gate array (FPGA) implementiert. Eine effiziente Umsetzung der Algorithmen in Bezug auf Zeitverhalten und Logikverbrauch ist grundlegend für den Entwurf der digitalen Schaltungen. Das Messsystem wird mit radioaktiven Prüfstrahlern hinsichtlich Messbereichsdynamik und Auflösung charakterisiert. Schließlich wird die Leistungsfähigkeit hinsichtlich der Anforderungen der Teilchentherapie mit Experimenten am Teilchenbeschleuniger untersucht. Ergebnisse: Es wurde ein Detektorsystem auf Basis von CZT Pixeldetektoren entwickelt und erprobt. Obwohl der Einsatz einer anwendungsspezifischen integrierten Schaltung zweckmäßig wäre, wurde dieser Ansatz zurückgewiesen, da kein verfügbarer Schaltkreis die Anforderungen erfüllte. Stattdessen wurde eine vielkanalige, kompakte und rauscharme analoge Verstärkerschaltung mit seriengefertigten integrierten Schaltkreisen aufgebaut. Letztendlich werden die 65 Informationskanäle eines Detektors digitalisiert, verarbeitet und visualisiert. Eine fortschrittliche digitale Signalverarbeitung überführt die traditionellen Ansätze der Nuklearelektronik in Algorithmen und digitale Filterstrukturen für einen FPGA. Es konnte gezeigt werden, dass die digitale Pulsverarbeitung in Bezug auf die charakteristischen Signale (u.a. variierende Anstiegszeiten, tiefenabhängige Energiemessung) eines CZT Pixeldetektors eine sehr gute Energieauflösung (~2% FWHM at 511 keV) sowie eine Zeitmessung im Bereich von einigen 10 ns ermöglicht. Weiterhin haben die experimentellen Ergebnisse gezeigt, dass der Dynamikbereich des Detektorsystems im Vergleich zum bestehenden Prototyp der Compton-Kamera deutlich verbessert werden konnte (~10 keV..7 MeV). Nach allem konnten auch Zählraten von >100 kcps in einem hochenergetischen Strahl mit dem CZT Pixeldetektor verarbeitet werden. Dies stellt aber lediglich eine Begrenzung des Detektors aufgrund seines Volumens, nicht jedoch der Elektronik, dar. Zudem wurde die Vielseitigkeit der digitalen Signalverarbeitung auch mit anderen Detektormaterialen (u.a. CeBr3) demonstriert. Mit Voraussicht auf einen hohen Datendurchsatz in einer verteilten Datenerfassung von mehreren Detektoren, wurde als Datenschnittstelle eine Gigabit Ethernet Verbindung implementiert. Schlussfolgerung: Um die Leistungsfähigkeit eines CZT Pixeldetektors vollständig auszunutzen, ist eine digitale Signalverarbeitung zwingend notwendig. Ein entscheidender Vorteil des digitalen Ansatzes ist die einfache Handhabbarkeit in einem vielkanaligen System. Mit der Digitalisierung wurde ein notwendiger Schritt getan, um die Komplexität einer Compton-Kamera beherrschbar zu machen. Weiterhin zeigt die Technologiebewertung, dass ein CZT Pixeldetektor den Anforderungen der Teilchentherapie für die Messung prompter Gammastrahlen stand hält. Der bisher eingesetzte Streifendetektor muss zugunsten einer gesteigerten Effizienz und verbesserter Energieauflösung durch den Pixeldetektor ersetzt werden. Mit der Integration des entwickelten digitalen Detektorsystems in eine Compton-Kamera muss abschließend geprüft werden, ob dieses Verfahren für die Reichweitenkontrolle in der Teilchentherapie anwendbar ist. Auch wenn sich herausstellt, dass ein anderes Verfahren unter klinischen Bedingungen praktikabler ist, so kann auch dieses Detektorsystem von der gezeigten Instrumentierung eines digitalen Signalverarbeitungssystems profitieren.:1. Introduction 1.1. Aim of this work 2. Analog front-end electronics 2.1. State-of-the-art 2.2. Basic design considerations 2.2.1. CZT detector assembly 2.2.2. Electrical characteristics of a CZT pixel detector 2.2.3. High voltage biasing and grounding 2.2.4. Signal formation in CZT detectors 2.2.5. Readout concepts 2.2.6. Operational amplifier 2.3. Circuit design of a charge-sensitive amplifier 2.3.1. Circuit analysis 2.3.2. Charge-to-voltage transfer function 2.3.3. Input coupling of the CSA 2.3.4. Noise 2.4. Implementation and Test 2.5. Results 2.5.1. Test pulse input 2.5.2. Pixel detector 2.6. Conclusion 3. Digital signal processing 3.1. Unfolding-synthesis technique 3.2. Digital deconvolution 3.2.1. Prior work 3.2.2. Discrete-time inverse amplifier transfer function 3.2.3. Application to measured signals 3.2.4. Implementation of a higher order IIR filter 3.2.5. Conclusion 3.3. Digital pulse synthesis 3.3.1. Prior work 3.3.2. FIR filter structures for FPGAs 3.3.3. Optimized fixed-point arithmetic 3.3.4. Conclusion 4. Data interface 4.1. State-of-the-art 4.2. Embedded Gigabit Ethernet protocol stack 4.3. Implementation 4.3.1. System overview 4.3.2. Media Access Control 4.3.3. Embedded protocol stack 4.3.4. Clock synchronization 4.4. Measurements and results 4.4.1. Throughput performance 4.4.2. Synchronization 4.4.3. Resource utilization 4.5. Conclusion 5. Experimental results 5.1. Digital pulse shapers 5.1.1. Spectroscopy application 5.1.2. Timing applications 5.2. Gamma-ray spectroscopy 5.2.1. Energy resolution of scintillation detectors 5.2.2. Energy resolution of a CZT pixel detector 5.3. Gamma-ray timing 5.3.1. Timing performance of scintillation detectors 5.3.2. Timing performance of CZT pixel detectors 5.4. Measurements with a particle beam 5.4.1. Bremsstrahlung Facility at ELBE 6. Discussion 7. Summary 8. Zusammenfassung
28

Dual-Energy Computed Tomography for Accurate Stopping-Power Prediction in Proton Treatment Planning

Wohlfahrt, Patrick 17 October 2018 (has links)
Derzeitige Reichweiteunsicherheiten in der Protonentherapie verhindern das vollständige Ausschöpfen ihrer physikalischen Vorteile. Ein wesentlicher Anteil ist dabei auf die Vorhersage der Reichweite mittels Röntgen-Computertomographie (CT) zurückzuführen. Um die CT-bezogene Unsicherheit zu verringern, wird die Zwei-Spektren-Computertomographie (DECT) als vielversprechend angesehen. Innerhalb dieser Arbeit wurde die Anwendbarkeit von DECT in der Protonentherapie untersucht. Zunächst wurde ein CT-Scanprotokoll für die Strahlentherapie hinsichtlich Bildqualität und Konstanz der CT-Zahlen für verschiedene Körperregionen und -größen optimiert. Anschließend wurde die patientenindividuelle DECT- basierte Reichweitevorhersage kalibriert und ihre Genauigkeit in zwei Experimenten mit bekannter Referenz unter Verwendung eines anthropomorphen Phantoms und von homogenen biologischen Geweben verifiziert. Die klinische Relevanz von DECT wurde in einer retrospektiven Analyse von Krebspatienten mit Tumoren im Kopf, Becken oder Thorax nachgewiesen. Die systematischen Reichweiteunterschiede zwischen DECT und dem klinischen Standardverfahren konnten durch die Optimierung der Standardmethode basierend auf zusätzlichen mit DECT erworbenen Patienteninformationen reduziert werden. Somit wurde DECT erstmalig klinisch genutzt, um die Reichweiteberechnung zu verbessern. Die patientenindividuelle DECT-basierte Reichweitevorhersage kann zusätzlich Gewebevariabilitäten innerhalb eines und zwischen Patienten berücksichtigen, wie für Kopftumorpatienten gezeigt wurde. Dies legt den Grundstein für eine genauere Reichweiteberechnung und eröffnet neue Möglichkeiten für die Reduktion klinischer Sicherheitssäume, in denen die CT-bezogenen Unsicherheiten berücksichtigt sind.:1 Introduction 2 Physical Principles of Computed Tomography 2.1 Image Acquisition 2.2 Image Reconstruction 2.3 Dual-Energy Computed Tomography 3 Physical Principles of Proton Therapy 3.1 Treatment Techniques 3.2 Uncertainties in Proton Therapy 4 Principles of Stopping-Power Prediction from Computed Tomography 4.1 Single-Energy Computed Tomography 4.2 Dual-Energy Computed Tomography 5 Experimental Calibration of Stopping-Power Prediction 5.1 Scan Protocol Optimisation in Computed Tomography 5.2 Characterisation of Pseudo-Monoenergetic CT Calculation 5.3 Determination of Proton Stopping Power 5.4 Calibration of Stopping-Power Prediction Methods 6 Experimental Verification of Stopping-Power Prediction 6.1 Anthropomorphic Head Phantom 6.2 Homogeneous Biological Tissue Samples 7 Clinical Translation and Validation of Dual-Energy Computed Tomography 7.1 Feasibility of Dual-Spiral Dual-Energy CT 7.2 Range Prediction in Cerebral and Pelvic Tumour Patients 7.3 Tissue Variability in Brain-Tumour Patients 7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT 7.5 DECT-Based Refinement of the Hounsfield Look-Up Table 8 Summary 9 Zusammenfassung / Range uncertainty in proton therapy currently hampers the full exploitation of its physical advantages. A substantial amount of this uncertainty arises from proton range prediction based on X-ray computed tomography (CT). Dual-energy CT (DECT) has often been suggested as a promising imaging modality to reduce this CT-related range uncertainty. Within this thesis, the translation of DECT into application in proton therapy was evaluated. First, a CT scan protocol was optimised for radiotherapy considering the image quality and CT number stability for various body regions and sizes. The patient-specific DECT-based range prediction was then calibrated and its accuracy validated in two ground-truth experiments using an anthropomorphic phantom and homogeneous biological tissues. Subsequently, the clinical relevance of DECT was demonstrated in a retrospective cohort analysis of cerebral, pelvic and thoracic tumour patients. The systematic range deviations between the DECT and state-of-the-art approach were then reduced by adapting the standard method utilizing additional patient information obtained from DECT. Hence, DECT was clinically applied for the first time to refine proton range calculation. As a further step, the use of patient-specific DECT-based range prediction also considers intra- and inter-patient tissue variabilities as quantified in brain-tumour patients. A future implementation will be an important cornerstone to improve proton range calculation and might open up the possibility to reduce clinical safety margins accounting for the CT-related range uncertainty.:1 Introduction 2 Physical Principles of Computed Tomography 2.1 Image Acquisition 2.2 Image Reconstruction 2.3 Dual-Energy Computed Tomography 3 Physical Principles of Proton Therapy 3.1 Treatment Techniques 3.2 Uncertainties in Proton Therapy 4 Principles of Stopping-Power Prediction from Computed Tomography 4.1 Single-Energy Computed Tomography 4.2 Dual-Energy Computed Tomography 5 Experimental Calibration of Stopping-Power Prediction 5.1 Scan Protocol Optimisation in Computed Tomography 5.2 Characterisation of Pseudo-Monoenergetic CT Calculation 5.3 Determination of Proton Stopping Power 5.4 Calibration of Stopping-Power Prediction Methods 6 Experimental Verification of Stopping-Power Prediction 6.1 Anthropomorphic Head Phantom 6.2 Homogeneous Biological Tissue Samples 7 Clinical Translation and Validation of Dual-Energy Computed Tomography 7.1 Feasibility of Dual-Spiral Dual-Energy CT 7.2 Range Prediction in Cerebral and Pelvic Tumour Patients 7.3 Tissue Variability in Brain-Tumour Patients 7.4 Feasibility of 4D Dual-Spiral Dual-Energy CT 7.5 DECT-Based Refinement of the Hounsfield Look-Up Table 8 Summary 9 Zusammenfassung
29

Variable Relative Biological Effectiveness in Proton Treatment Planning

Hahn, Christian 17 August 2023 (has links)
Protonen töten Zellen wirksamer ab als Photonen. Die klinisch verwendete konstante relative biologische Wirksamkeit (RBW) für Protonen vernachlässigt jedoch erste klinische Evidenz einer RBW-Variabilität, die vom linearen Energietransfer (LET) abhängt. Diese Arbeit trägt dazu bei, die RBW-Variabilität in Protonen-Bestrahlungsplänen zu berücksichtigen, um potenzielle Nebenwirkungen zu vermindern. Zuerst wurde ein erhöhtes Risiko für RBW-induzierte Nebenwirkungen bei Hirntumorpatienten festgestellt. Dies konnte jedoch nicht systematisch durch klinische Planungsstrategien reduziert werden. Zweitens ergab eine multizentrische europäische Studie, dass die zentrums-spezifischen, nicht standardisierten LET-Berechnungen erheblich voneinander abweichen. Eine harmonisierte LET-Definition wurde vorgeschlagen und reduzierte die Variabilität zwischen den Zentren auf ein klinisch akzeptables Niveau, was künftig eine einheitliche Dokumentation des Therapieergebnisses ermöglicht. Abschließend wurden vier Strategien zur RBW-Reduktion in der Planoptimierung bei Hirntumorpatienten angewandt, die das Risiko für Nekrose und Erblindung erheblich reduzierten. LET-Optimierung in Hochdosisregionen erscheint besonders geeignet, um die Sicherheit der Patientenbehandlung künftig weiter zu verbessern.:List of Figures vii List of Tables viii List of Acronyms and Abbreviations ix 1 Introduction 1 2 Theoretical background 3 2.1 Proton interactions with matter 4 2.2 Biological effect of radiation 8 2.2.1 Linear-quadratic model 8 2.2.2 Relative biological effectiveness 9 2.3 Proton beam delivery and field formation 13 2.4 Treatment planning 14 2.4.1 Patient modelling and structure definition 15 2.4.2 Treatment plan optimisation 16 2.4.3 Treatment plan evaluation 19 2.5 Proton therapy uncertainties and mitigation strategies 22 2.5.1 Clinical mitigation strategies 23 2.5.2 Optimisation approaches beyond absorbed dose 26 3 Variable biological effectiveness in PBS treatment plans 29 3.1 LET and RBE recalculations of proton treatment plans with RayStation 30 3.1.1 Monte Carlo dose engine 30 3.1.2 Monte Carlo scoring extensions 32 3.1.3 Graphical user interface 33 3.2 LET assessment and the role of range uncertainties 36 3.2.1 Patient cohort and treatment plan creation 37 3.2.2 Simulation of range deviations 38 3.2.3 Treatment plan recalculation settings 39 3.2.4 Resulting impact of range deviations 40 3.3 Patient recalculations in case of side effects 46 3.3.1 Image registration and range prediction 48 3.3.2 Retrospective treatment plan assessment 49 3.4 Benefit of an additional treatment field 50 3.4.1 Patient and treatment plan information 50 3.4.2 Results of variable RBE recalculations 51 3.5 Discussion 51 3.6 Summary 59 4 Status of LET and RBE calculations in European proton therapy 61 4.1 Study design 62 4.1.1 Treatment planning information 64 4.1.2 Data processing and treatment plan evaluation 67 4.2 Treatment plan comparisons in the water phantom 68 4.2.1 Absorbed dose evaluation 69 4.2.2 Centre-specific LET calculations 69 4.2.3 Harmonised LET calculations 71 4.3 Treatment plan comparisons in patient cases 72 4.3.1 Dose-averaged linear energy transfer for protons 73 4.3.2 Centre-specific RBE models and parameters 76 4.4 Discussion 77 4.5 Summary 82 5 Biological treatment plan optimisation 83 5.1 Treatment plan design 84 5.1.1 Clinical goals 86 5.1.2 Novel treatment plan optimisation approaches 87 5.2 Treatment plan quality assessment with a constant RBE 90 5.3 Assessment of NTCP reductions with a variable RBE 90 5.4 Discussion 95 5.5 Conclusion 100 6 Summary 103 7 Zusammenfassung 107 Bibliography 111 Danksagung 137 / Protons are more effective in cell killing than photons. However, the clinically applied constant proton relative biological effectiveness (RBE) neglects emerging clinical evidence for RBE variability driven by the linear energy transfer (LET). This thesis aims to safely account for RBE variability in proton treatment plans to mitigate potential side effects. First, an elevated risk for RBE induced overdosage was found in brain tumour patients. However, this could not be mitigated systematically by clinical planning strategies. Second, a multicentric European study revealed that centre-specific non-standardised LET calculations differed substantially. A harmonised LET definition was proposed which reduced the inter-centre variability to a clinically acceptable level and allows for future consistent outcome reporting. Finally, four strategies to include RBE variability in treatment plan optimisation were applied to brain tumour patients, which considerably reduced the estimated risk for necrosis and blindness. Of these, LET optimisation in high dose regions may be suited for clinical practice to further enhance patient safety in view of a variable RBE.:List of Figures vii List of Tables viii List of Acronyms and Abbreviations ix 1 Introduction 1 2 Theoretical background 3 2.1 Proton interactions with matter 4 2.2 Biological effect of radiation 8 2.2.1 Linear-quadratic model 8 2.2.2 Relative biological effectiveness 9 2.3 Proton beam delivery and field formation 13 2.4 Treatment planning 14 2.4.1 Patient modelling and structure definition 15 2.4.2 Treatment plan optimisation 16 2.4.3 Treatment plan evaluation 19 2.5 Proton therapy uncertainties and mitigation strategies 22 2.5.1 Clinical mitigation strategies 23 2.5.2 Optimisation approaches beyond absorbed dose 26 3 Variable biological effectiveness in PBS treatment plans 29 3.1 LET and RBE recalculations of proton treatment plans with RayStation 30 3.1.1 Monte Carlo dose engine 30 3.1.2 Monte Carlo scoring extensions 32 3.1.3 Graphical user interface 33 3.2 LET assessment and the role of range uncertainties 36 3.2.1 Patient cohort and treatment plan creation 37 3.2.2 Simulation of range deviations 38 3.2.3 Treatment plan recalculation settings 39 3.2.4 Resulting impact of range deviations 40 3.3 Patient recalculations in case of side effects 46 3.3.1 Image registration and range prediction 48 3.3.2 Retrospective treatment plan assessment 49 3.4 Benefit of an additional treatment field 50 3.4.1 Patient and treatment plan information 50 3.4.2 Results of variable RBE recalculations 51 3.5 Discussion 51 3.6 Summary 59 4 Status of LET and RBE calculations in European proton therapy 61 4.1 Study design 62 4.1.1 Treatment planning information 64 4.1.2 Data processing and treatment plan evaluation 67 4.2 Treatment plan comparisons in the water phantom 68 4.2.1 Absorbed dose evaluation 69 4.2.2 Centre-specific LET calculations 69 4.2.3 Harmonised LET calculations 71 4.3 Treatment plan comparisons in patient cases 72 4.3.1 Dose-averaged linear energy transfer for protons 73 4.3.2 Centre-specific RBE models and parameters 76 4.4 Discussion 77 4.5 Summary 82 5 Biological treatment plan optimisation 83 5.1 Treatment plan design 84 5.1.1 Clinical goals 86 5.1.2 Novel treatment plan optimisation approaches 87 5.2 Treatment plan quality assessment with a constant RBE 90 5.3 Assessment of NTCP reductions with a variable RBE 90 5.4 Discussion 95 5.5 Conclusion 100 6 Summary 103 7 Zusammenfassung 107 Bibliography 111 Danksagung 137
30

Development of a prompt γ-ray timing system including a proton bunch monitor for range verification in proton therapy

Permatasari, Felicia Fibiani 19 June 2023 (has links)
Treatment verification is demanded to mitigate the range uncertainties in proton therapy and, hence, to enhance treatment precision and outcomes. As a non-invasive approach for range verification, the prompt γ-ray timing (PGT) measures the time distribution of the promptly produced γ-rays using fast uncollimated scintillation detectors. However, the measured time spectra of the prompt γ-rays (PGs) are sensitive to phase instabilities between the accelerator radiofrequency (RF) used as the reference time and the actual arrival time of the therapeutic particles at the patient and require online monitoring of the arrival time of the proton bunches. Within this thesis, the development of a PGT system including an appropriate proton bunch monitor (PBM) for range verification in proton therapy was studied. In the first part of the work, two PBM options were explored and characterized under near-to-clinical beam conditions to find a suitable PBM satisfying the prerequisites and constraints for the application in the PGT-based range verification. The selected PBM prototype comprises scintillating fibers read out on both ends with silicon photomultipliers (SiPMs). By placing the PBM at the beam halo, sufficient counting statistics and processable trigger rates could be achieved for the monitoring of the proton bunch periodicity with reasonable statistical precision, while minimizing the interference to the clinical beam delivery. In the second part of the work, a proof-of-principle experiment of the PGT-based range verification with a heterogeneous target was performed together with online monitoring of the proton bunch instabilities. The sensitivity and the overall uncertainty of the PGT technique were evaluated for two proton energies, different thicknesses of air cavity inserts, various tissue-equivalent material inserts, different selections of the PG energy window, and other PGT parameters. The experimental results confirmed that real-time monitoring of the proton range during treatment using the PGT technique is feasible with millimeter precision and submillimeter accuracy at close-to-clinical beam currents and clinically relevant proton energies. The integration of the PBM to the PGT-based range verification marks another important step toward the clinical application of the PGT technique for in vivo verification and qualitative assessment of the proton range during treatment.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography / Die Verifikation der Behandlung ist erforderlich, um die Reichweiteunsicherheiten in der Protonentherapie zu verringern und damit die Behandlungspräzision und die Behandlungsergebnisse zu verbessern. Das Prompt-γ-Ray-Timing (PGT) ist eine nicht-invasive Methode zur Reichweitenverifizierung, bei der die Zeitverteilung der prompt erzeugten γ-Strahlung mit schnellen, nicht-kollimierten Szintillationsdetektoren detektiert wird. Die gemessenen Zeitspektren der prompten γ-Strahlung (PGs) sind jedoch empfindlich gegenüber Phaseninstabilitäten zwischen der als Referenzzeit verwendeten Radiofrequenz (RF) des Beschleunigers und der tatsächlichen Ankunftszeit der therapeutischen Teilchen am Patienten und erfordern eine Online-Überwachung der Ankunftszeit der Protonenmikropulse. Im Rahmen dieser Arbeit wurde die Entwicklung eines PGT-Systems einschließlich eines geeigneten Proton-Bunch-Monitors (PBMs) für die Reichweitenverifikation in der Protonentherapie untersucht. Im ersten Teil der Arbeit wurden zwei PBM-Optionen untersucht und unter kliniknahen Strahlbedingungen charakterisiert, um einen PBM, der die Voraussetzungen und Einschränkungen für die Anwendung in der PGT-basierten Reichweitenverifikation erfüllt, auszuwählen. Der ausgewählte PBM-Prototyp besteht aus szintillierenden Fasern, die an beiden Enden mit Silizium-Photomultipliern (SiPMs) ausgelesen werden. Durch die Platzierung des PBMs im Strahlhalo konnten ausreichende Zählstatistiken und verarbeitbare Triggerraten für die Überwachung der Periodizität der Protonenmikropulse mit einer angemessenen statistischen Genauigkeit erreicht werden, während gleichzeitig die Beeinträchtigung der klinischen Strahlapplikation minimiert wird. Im zweiten Teil der Arbeit wurde der experimentelle Machbarkeitsnachweis für die PGT-basierte Reichweitenverifikation in einem heterogenen Target zusammen mit der Online-Überwachung der Instabilitäten der Protonenmikropulse erbracht. Die Empfindlichkeit und die Gesamtunsicherheit der PGT-Technik wurden für zwei Protonenenergien, unterschiedliche Dicken der Lufthohlraumeinsätze, verschiedene gewebeäquivalente Materialeinsätze, andere Auswahlen der PG-Energiefenster und weitere PGT-Parameter quantifiziert. Die experimentellen Ergebnisse bestätigten, dass die Echtzeitüberwachung der Protonenreichweite während der Behandlung mit Hilfe der PGT-Technik mit Millimeterpräzision und Submillimetergenauigkeit bei kliniknahen Strahlströmen und klinisch relevanten Protonenenergien möglich ist. Die Integration des PBMs in die PGT-basierten Reichweitenverifizierung ist ein weiterer wichtiger Schritt auf dem Weg zur klinischen Anwendung der PGT-Technik für die In-vivo-Reichweitenüberprüfung und die qualitative Bewertung der Protonenreichweite während der Behandlung.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography

Page generated in 0.0678 seconds