• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 18
  • 11
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude computationnelle des propriétés structurales des matériaux BaMxZr1-xO3 (M=Y, In et Sc ; x=0,125, 0,25 et 0,375) en relation avec leur conductivité protonique / Computational study of structural properties of BaMxZr1-xO3 (M=Y, In and Sc ; x=0.125, 0.25 and 0.375) materials in relation to their proton conductivity

Zeudmi Sahraoui, Djamila 17 December 2012 (has links)
À l'heure actuelle, le développement dans les piles à combustible gagne un regard considérable pour la cogénération de l'énergie propre. Plus particulièrement, les piles à combustible à conduction protonique dont leurs électrolytes sont des oxydes de type pérovskite. Nous nous sommes intéressés aux électrolytes des piles de type PCFC « Proton Ceramic Fuel Cell » dont la température de fonctionnement est intermédiaire. L'intérêt porté pour l'amélioration de la diffusion du proton au sein de ces matériaux implique une compréhension fondamentale de l'interaction du proton avec son environnement. Cette problématique a conduit à une étude systématique en appliquant l'approche de la théorie de la fonctionnelle de la densité sur les matériaux de BaMxZr1-xO3 (M=Y, In et Sc ; x=12,5, 25 et 37,5%). Dans un premier temps, la validation de la méthode appliquée sur le système idéal de BaZrO3 et BaZr0,625Y0,375O3 a été nécessaire afin de reproduire les propriétés électroniques, structurales et de vibration de phonon en bon accord avec les résultats expérimentaux. Dans un deuxième temps, la variation des propriétés électroniques et structurales en fonction de la nature du dopant accepteur (M=Y, In et Sc), sa répartition dans le réseau, et sa concentration ont été étudiées. Une distorsion locale autour de l'atome dopant dans le réseau a été obtenue. Par conséquent, une baisse de symétrie du réseau a été déterminée. Cette distorsion est remarquée quel que soit la nature du dopant. La différence la plus marquée de l'effet de la nature du dopant est trouvée sur les charges atomiques des ions oxygène selon trois environnement possible : Zr-O(1)-Zr, Zr-O(2)-M et M-O(3)-M. Une diminution de la charge (et donc diminution de la basicité) sur le site O3 est bien remarquée dans BaMxZr1-xO3. On attribue cette diminution de charge à la formation d'une liaison covalente à caractère anti-liant Y-O2 (O3). La liaison est ionique pour Sc-O2(O3) et covalente de faible caractère liant pour In-O2 (O3). Nous avons poursuivi nos investigations sur l'insertion d'hydrogène dans les matériaux étudiés. L'analyse des propriétés électroniques, structurales, des vibrations de phonon et l'énergie d'interaction de l'hydrogène des structures BaMxZr1-xO3H, nous ont permis d'établir une corrélation entre le caractère de la liaison chimique M-O, l'insertion du proton et la force de la liaison O-H. L'insertion de H sur le site O3 dans BaYxZr1-xO3 (x=0,25 et 0,375) n'est pas obtenue, probablement à cause de la faible basicité de l'ion oxygène dans la configuration Y-O3-Y. L'insertion du H sur le site O3 pour les deux configurations In-O-In et Sc-O-Sc est obtenue dans BaInxZr1-xO3 (x=0,25 et 0,375) et BaScxZr1-xO3 (x=0,25 et 0,375) respectivement. La variation de l'énergie d'interaction de l'hydrogène avec son environnement dévoile une stabilisation des défauts protoniques significativement plus importante dans le cas de l'atome dopant accepteur yttrium que dans le cas des dopants In et Sc. L'analyse des fréquences de vibration de valence de la liaison O-H a montrée que cette liaison est plus forte dans BaInxZr1-xO3 et BaScxZr1-xO3 que dans BaYxZr1-xO3. En conclusion, nos résultats démontrent que le matériau BaZrO3 dopé en Y favorise plus la formation des défauts protoniques avec une liaison O-H moins forte que dans les matériaux baryum zirconates dopés en In et Sc. / At the present, the development of fuel cells gains a significant interest for their application in clean energy technologies, more specifically, the proton conducting fuel cells. We are interested in the perovskite oxides electrolytes used in PCFC fuel cell “Proton Ceramic Fuel Cell” which operates at intermediate temperature. The interest for the improvement of proton diffusion in these materials necessitates a fundamental systematic understanding of the proton interaction with its environment. Therefore we applied Density Functional Theory based approach on ideal BaZrO3 and doped barium zirconates BaMxZr1-xO3 (M=Y, Sc and In ; x=12.5, 25 and 37.5%), currently known among the best candidates for PCFC electrolytes. First, the validation of the method applied to the ideal system and BaY0.375Zr0.625O3 was necessary in order to reproduce the electronic, structural and phonon vibration in good agreement with the experimental results. Second, the variation of electronic and structural properties and of the phonon vibration was studied as a function of acceptor dopant nature, positions in the lattice and concentration. A local distortion around the dopant atom in the lattice was obtained. Therefore a reduction of the symmetry system has been determined. This distortion is noticeable regardless of the nature of the dopant. The most striking difference due to the dopant nature is found for the atomic charges on three possible oxygen environments : Zr-O(1)-Zr, Zr-O(2)-M and M-O(3)-M. A decrease in the atomic charge of O3 site (decrease of basicity) is well observed in BaYxZr1-xO3. This decrease in the charge can be attributed to the formation of a covalent anti-binding Y-O2(O3) bond. The binding is ionic for Sc-O2 and slightly covalent with a maximum of 15% covalency for In-O2. Our next investigations were focused on the insertion of hydrogen in the studied materials. The analysis of the computed electronic and structural properties, phonon vibrations and hydrogen interaction energies allowed us to establish a correlation between the nature of the chemical bonding M-O, the insertion energy of the proton and the O-H bond strength. The insertion of hydrogen in O3 site in BaYxZr1-xO3 (x=0.25 and 0.375) is not obtained, probably due to the low basicity of the oxygen ion in the configuration Y-O-Y. The insertion of H at the oxygen site for both In-O3-In and Sc-O3-Sc configurations found to be energetically favored in BaInxZr1-xO3 (x=0.25 and 0.375) and BaScxZr1-xO3 (x=0.25 and 0.375) respectively. The variation of hydrogen interaction energy with its environment reveals a significantly stronger stabilization of proton defects in the case of yttrium acceptor dopant than in the two other barium zirconates doped with In and Sc. The analysis of O-H stretching vibration frequencies has shown that the O-H bond is stronger in BaInxZr1-xO3 and BaScxZr1-xO3 than in BaYxZr1-xO3. In conclusion, our results show that the Y doped barium zirconate material favors the formation of proton defects, with a weaker O-H bond than in In and Sc doped oxides.
12

Nouvelles Membranes Conductrices Protoniques à base de Polymères Perfluorosulfonés Acides pour Application Pile à Combustible / New Conductive Protonic Membranes based on Perfluorosulfonic Acids Polymer for Fuel Cell Application

Guimet, Adrien 02 April 2015 (has links)
Ce travail porte sur l'élaboration et la caractérisation de nouvelles membranes conductrices protoniques à base de ionomères perfluorsulfonés acides (PFSA) destinées à l'application pile à combustible PEMFC. Deux approches ont été utilisées afin d'améliorer les propriétés thermomécaniques d'un PFSA, l'Aquivion®, en vue de son utilisation à des températures supérieures à 80 °C. La première consiste à l'associer avec un polymère aromatique hydrogéné sulfoné, le poly(éther éther cétone) sulfoné (S-PEEK), via un simple mélange de ces polymères, conduisant à des matériaux Aquivion/S-PEEK. Dans la seconde voie, l'Aquivion® est combiné à un réseau de polymère neutre fluoré, le Fluorolink® MD 700, au sein d‘une architecture de Réseaux semi-Interpénétrés de Polymères (semi-RIP). Le réseau fluoré est alors synthétisé par voie radicalaire. À titre de comparaison, le S-PEEK a également été associé à ce même réseau neutre. Ces différents matériaux ont été élaborés sur une large gamme de composition.Leurs capacités d'échange ionique, leurs propriétés mécaniques, de sorption et de transport d'eau et de conductivité protonique ainsi que leurs stabilités mécanique, thermique et chimique ont fait l'objet de caractérisations les plus complètes possibles. Associées à différentes techniques de microscopie, elles ont permis également de déterminer la morphologie de ces nouveaux matériaux. Enfin, les nouvelles membranes présentant les caractéristiques physico-chimiques ex-situ les plus intéressantes ont été testées dans des conditions réelles de fonctionnement en pile à combustible, entre 80 à 105 °C. Les performances en pile à combustible de certains de ces matériaux sont similaires voire supérieures à celles de la membrane de PFSA seul. / This work focuses on the synthesis and characterization of new proton conducting membranes based on Aquivion®, a perfluorosulfonic acid ionomer (PFSA), for Proton Exchange Membrane Fuel Cell (PEMFC) application. Two approaches have been used to strengthen thermomechanical properties of this PFSA for operation above 80 °C. The first approach is the blend of Aquivion® with a sulfonated poly (ether ether ketone) (S-PEEK), leading to Aquivion/S-PEEK materials. In the second approach, Aquivion® is combined with a neutral Fluorolink® MD 700 fluorinated polymer network through semi-interpenetrating polymer network architecture (semi-IPN). In comparison, S-PEEK has also been associated with the same neutral network. All of these materials have been synthesized over a wide range of compositions.Their ion exchange capacity, mechanical properties, sorption and transport of water, and proton conductivity as well as their mechanical, chemical and thermal stabilities have been extensively characterized. Morphology of these new materials has also been studied using different microscopy techniques. Finally, thanks to these ex-situ studies, fuel cell tests from 80 to 105 °C have been investigated on the most promising membranes, whose performances are similar or higher compared to single PFSA membranes.
13

Développement par procédés plasma de polymères conducteurs protoniques de type phosphonique pour piles à combustible / Development by plasma processes of phosphonic-type proton conducting polymers for fuel cells

Bassil, Joëlle 12 March 2014 (has links)
Afin de rendre les piles à combustible de type PEMFC réellement compétitives, un certain nombre d'inconvénients liés à l'utilisation du Nafion® restent à contourner, en particulier sa mauvaise conductivité protonique à des températures supérieures à 80°C. Dans l'optique de pouvoir opérer à plus hautes températures (jusqu'à 120°C), le développement de membranes moins sensibles à l'eau s'avère donc déterminant. Les polymères à base de fonctions acide phosphonique sont considérés comme des candidats potentiels pour une intégration en tant que matériau électrolyte dans les PEMFC « hautes températures » (> 80°C) grâce à leur fort caractère amphotère qui leur confère une bonne conductivité protonique dans des conditions d'humidité réduites. Dans ce contexte, la majeure partie de ce travail de thèse concerne l'élaboration par polymérisation plasma (PECVD) de polymères à base de groupements acide phosphonique à partir du monoprécurseur diméthyl allyl phosphonate. Dans un premier temps, nous avons démontré la faisabilité d'élaborer par polymérisation plasma des polymères à base de fonctions acide phosphonique à partir d'un monoprécurseur. Nous avons confirmé par IRTF, EDX et XPS la présence des groupements acide phosphonique favorables au transport protonique et l'homogénéité de la composition chimique de la surface jusqu'au cœur du matériau plasma. Les matériaux plasma montrent une bonne stabilité thermique dans la gamme de température 80°C - 120°C. Ensuite, une optimisation des conditions de synthèse a été réalisée. Les plus importantes valeurs de vitesses de croissance (28 nm.min-1 sur plaquette de silicium, 22 nm.min-1 sur PTFE et 26 nm.min-1 sur Nafion®211), de CEI (4,65 meq.g-1) et de conductivité (0,08 mS.cm-1 à 90°C et 30% RH) sont celles de la membrane synthétisée à 60 W. Des mesures de perméabilité au méthanol, à l'éthanol et au glycérol ont été réalisées et montrent que les films plasma sont intrinsèquement 40 à 235 fois moins perméables au combustible que le Nafion®211 du fait de leur fort taux de réticulation. Les polymères ont été déposés en tant que liants sur des électrodes E-TEK® pour intégration en pile. Nous avons constaté que le liant phosphonique plasma possède une conductivité protonique suffisante pour permettre le transport des protons à l'interface membrane-électrodes. En parallèle, nous avons réalisé le traitement de surface par plasma d'une membrane phosphonique conventionnelle pour en améliorer la stabilité thermique et la rétention au combustible. Les analyses thermogravimétriques montrent une légère amélioration de la stabilité thermique suite au traitement de surface. Des tests de perméabilité au méthanol et à l'éthanol montrent que la membrane traitée par plasma est 2 à 4 fois moins perméable que la membrane vierge. Le traitement à 60 W conduit aux coefficients de diffusion les plus faibles (DMeOH = 9.10-12 m2.s-1 et DEtOH = 6.10-12 m2.s-1). Des tests en pile ont été effectués montrant de meilleures performances de la membrane traitée en comparaison de son homologue non traité. / The proton exchange membrane is a key component in the PEMFC-type fuel cell; it plays a decisive role as electrolyte medium for proton transport and barrier to avoid the direct contact between fuel and oxygen. The Nafion® is one of the most extensively studied proton exchange membrane for PEMFC applications. However, it has a number of drawbacks that need to be overcome, especially the poor performance at temperature above 80°C. That's why the development of effective and low cost membranes for fuel cell turned to be a challenge for the membrane community in the last years. Phosphonic acid derivatives are considered suitable candidates as ionomers for application in PEMFC at high temperature (> 80°C) thanks to their efficient proton transport properties under low humidity condition due to their amphoteric character.In this work, plasma polymers containing phosphonic acid groups have been successfully prepared using dimethyl allylphosphonate as a single precursor demonstrating the feasibility of plasma process for the manufacture of proton exchange membranes. Moreover, plasma polymers properties have been investigated as a function of the plasma conditions. The evolution of the films growth rate on three different supports as a function of the plasma discharge power is bimodal, with a maximum (close to 30 nm min-1 on Si) at 60 W. The chemical composition of plasma materials (investigated by FTIR, EDX and XPS) is quite homogeneous from the surface to the bulk; it is characterized by a wide variety of bond arrangements, in particular the presence of phosphonate and phosphonic acid groups which are above all concentrated in the plasma film synthesized at 60 W, characterized by the highest ion exchange capacity (4.65 meq g-1) and the highest proton conductivity (0.08 mS cm-1 at 90°C and 30% RH). TGA analysis has shown that phosphonic acid-based plasma polymers retain water and don't decompose up to 150 °C, which reveals a satisfying thermal stability for the fuel cell application. In terms of fuel retention, plasma films are intrinsically highly performing (methanol, ethanol and glycerol permeabilities being 40 to 235 lower than that of Nafion®211). The plasma films were deposited on fuel cell electrodes (E-TEK®) as binding agents. We have noticed that the phosphonic binder has a sufficient proton conductivity to allow proton transport at the electrode-membrane interface.A second part of this work concerns the surface treatment by plasma process of a conventional phosphonated membrane for improvement of thermal stability and fuel retention. TGA analysis has shown a slight improvement of the thermal stability for the treated membrane. Methanol and ethanol permeabilities tests show that the plasma-modified membrane is 2 to 4 times less permeable than the non-modified membrane. The treatment at 60 W shows the lowest fuel diffusion coefficients (DMeOH = 9.10-12 m2.s-1 and DEtOH = 6.10-12 m2.s-1). Fuel cell tests were realized showing better performance for the modified membrane compared to the non-modified one.
14

Propriétés de conduction mixte O2- / H+ / e- dans quelques phases dérivées de la perovskite : application aux cathodes de piles à combustible H+-SOFC / Mixed conduction O2- / H+ / e- properties in some phases derived from perovskite : application as H+-SOFC cathode

Grimaud, Alexis 13 December 2011 (has links)
La pile à combustible H+-SOFC (Protonic Conducting Solid Oxide Fuel Cell) basée surl’utilisation d’un électrolyte conducteur protonique peut représenter une alternative intéressanteà la pile SOFC qui présente actuellement le meilleur rendement. Cependant, la surtension à lacathode reste élevée et ce travail est dédié à la compréhension du mécanisme de réductionl'oxygène à cette électrode.Différents matériaux conducteurs mixtes O2- / e- de structures dérivées de la perovskite ABO3,tels que les doubles perovskites LnBaM2O5+d (Ln = Pr, Nd et Gd et M = Co et Fe) ainsi que lesphases de Ruddlesden-Popper A2MO4+d (Ln = Pr et Sr et M = Ni), ont été étudiés. Leur niveaude conductivité électronique ainsi que leur non-stoechiométrie en oxygène ont d’abord étédéterminées. Puis, à l’aide de la détermination des coefficients de diffusion de l’oxygène par laméthode de relaxation de conductivité électrique, leur conductivité ionique O2- a été estimée.Une étude électrochimique et plus spécialement la détermination des étapes limitant la réactionde réduction de l’oxygène à la cathode de pile H+-SOFC a ensuite permis de démontrer le rôledu proton dans le mécanisme de réaction pour les matériaux présentant les meilleuresperformances électrochimiques.Enfin, dans le cadre d’un projet ANR HPAC 2009 « CONDOR », des mono-cellules de piles H+-SOFC ont été mises en forme et des densités de puissance proche de 180 mW/cm² à 0.6 V à600°C ont été obtenues. / The H+-SOFC (Protonic Conducting Solid Oxide Fuel Cell) based on a protonic conductingelectrolyte can represent an interesting alternative to the SOFC fuel cell. Nevertheless, the highcathodic overpotential remains a severe drawback and this thesis is dedicated to the study of theunderstanding of the oxygen reduction at the cathode.Several mixed O2- / e- conductors derived from perovskite ABO3 such as double perovskiteLnBaM2O5+d and Ruddlesden Popper phases A2MO4+d were studied. Their electronic conductivityas well as their oxygen non-stoichiometry were first determined. Then, their oxygen diffusioncoefficients were measured using the electrical conductivity relaxation method and their O2-conductivity estimated. Rate determining steps of the oxygen reduction reaction weredetermined from electrochemical measurements and it was shown that proton is involved in theoxygen reduction for materials showing the best electrochemical performances.Finally, single H+-SOFC cells were developed in the framework of the ANR HPAC 2009 project“CONDOR” and power densities of about 180 mW/cm² at 0.6 V at 600°C were obtained.
15

Synthèse et caractérisation de nouveaux matériaux de cathode pour piles à combustible à conduction protonique PCFC (Protonic Ceramic Fuel Cell) / Synthesis and characterization of new PCFC (Protonic Ceramic Fuel Cell) cathode materials

Dailly, Julian 16 December 2008 (has links)
Le développement de piles à combustibles capables de fonctionner à des températures intermédiaires de l’ordre de 400-600°C présente un grand intérêt tant du point de vue du vieillissement des matériaux que des différents éléments du système complet. Une des technologies envisagées est basée sur l’utilisation d’électrolyte céramique possédant une conduction protonique élevée (Protonic Ceramic Fuel Cell PCFC). A ce jour, un des problèmes principaux concerne les fortes surtensions observées au niveau de la cathode lors du passage d’un courant. Dans ce cadre, le but de nos recherche a été de concevoir de nouveaux matériaux de cathode pour pile PCFC présentant de bonnes propriétés de conduction mixte ionique et électronique ainsi qu’une activité catalytique élevée vis-à-vis de la réaction de réduction de l’oxygène, entre 400 et 600°C. Plusieurs matériaux à conduction mixte ont été synthétisés à l’ICMCB, notamment des perovskites et des oxydes de structure de type Ruddlesden-Popper (en particulier les oxydes A2MO4+?). Des analyses thermogravimétriques ont été réalisées pour étudier la stabilité de ces phases sous air humide, ainsi qu’une éventuelle insertion d’eau dans la structure. Des demi-cellules symétriques ont été élaborées pour les caractérisations éléctrochimiques par spectroscopie d’impédance complexe et voltampérométrie (mesures de résistances spécifiques de surface, courbes de polarisation cathodique). Les caractérisations physico-chimiques et électrochimiques ont permit de sélectionner les meilleurs composés et ont conduit à la réalisation de la première monocellule PCFC utilisant le matériau de cathode Pr2NiO4+?. Des densités de puissance de 100 mW/cm² ont été mesurées pour une température de fonctionnement de 600°C. / Development of Fuel Cell operating at intermediate temperatures (400-600°C) is more and more interesting regarding ageing of materials. One of these technologies is based on ceramic electrolytes with high protonic conductivity (Protonic Ceramic Fuel Cell, PCFC). Nowadays, the major problem is overpotential at the cathode side, under polarization. In this context, our researches aimed to elaborate new cathode materials for PCFC with high mixed conductivity and good electrocatalytic property toward oxygen reduction, between 400 and 600°C. Several materials have been synthesised at the ICMCB, like perovskites and Ruddlesden-Popper type phase (A2MO4+?). Thermogramvimetric analyses have been realised in order to study phase stability under moist air and a possible insertion of water in the structure. Symmetrical half-cells have been elaborated for Electrochemical Impedance Spectroscopy and voltametric measurements (measure of Area Specific Resistance, cathodic polarization curves). The physico-chemical and electrochemical characterizations were useful to choose the best compounds and lead to fabrication of the first cell PCFC with Pr2NiO4+? as cathode materials. Power densities of 100mW/cm² have been reached for a working temperature of 600°C.
16

Modéles réduits pour le transport de particules rapides dans le cadre de la fusion par confinement inertiel / Fast models for fast particles transport in the context of ICF

Regan, Cyril 03 December 2010 (has links)
Le transport de l'énergie dans le cadre du schéma d'allumage rapide pour la Fusion par Confinement Inertiel (FCI) se fait au moyen d'électrons relativistes ou d'ions rapides. Le transport des particules et le processus de dépôt d'énergie induisent une physique complexe dont la description détaillée requiert des calculs cinétiques multidimensionnels précis. Exigeant en ressources informatiques, ces modules de transport cinétiques sont peut compatibles avec les soucis d'efficacité des utilisateurs de codes hydrodynamiques.Un des enjeux actuels consiste à développer méthodes efficaces qui rendent compte des principales caractéristiques du processus de transport cinétique et qui soient suffisamment rapides pour être couplées à un calcul intégré d'assemblage de combustible et de combustion. J'ai étudié dans ce travail deux modèles de transport de particules chargées, qui tendent à répondre à ces besoins. Le premier modèle (Trumpet) est une extension à deux dimensions d'un modèle simplifié considérant un angle de diffusion moyen. Le second modèle (M1) est une simplification des équations de Fokker Planck basée sur une fermeture angulaire respectant le principe de minimisation d'entropie.Ces deux modèles ont été implémentés et intégrés dans le code hydrodynamique du CELIA (CHIC). Après avoir étudié les avantages et les limites de ces modèles, je les ai appliqué au calcul de dépôt d'ions énergétiques dans une cible compressée. Nous avons modélisé un diagnostic d'imagerie protonique d'une expérience de compression d'un cylindre par laser et analysé l'allumage d'une cible par des ions de deutérium tritium et de carbone accélérés au moyen d'impulsions ultra intense. / The energy transport in the Fast Ignition scheme within the framework of Inertial Confinement Fusion (ICF) is done by means of energetic charged particles, relativistic electrons or fast ions. The particle transport and energy deposition process is rather complicated and its detailed description requires large scale kinetic multidimensional calculations. These codes are CPU time consuming and cannot be easily implemented in radiation hydrodynamic codes that describe the fuel assembly, resulting energy deposition and the combustion. Reduced methods are needed that account for the main features of the kinetic transport process and are sufficiently fast and efficient to be introduced directly in an hydrodynamic module. We have developed two reduced models of charged particles transport, suitable for integration in hydro-codes. The first model, called Trumpet, is a two-dimensional extension of a simplified 1D model for the average scattering angle. The second model called M1 is a simplification of the Fokker Planck equation, based one the angular closure respecting the minimum entropy principle. These two models have been integrated in the CELIA hydrodynamic code (CHIC). After considering the advantages and limitations of these models, we used them to calculate the ion energy deposition in a compressed target. We have modelled the protonic radiography of a cylindrical laser-driven impulsion, and analyse a new fast ignition scheme with fast deuterium tritium and carbon ions accelerated by laser.
17

Электрические свойства перовскитоподобных фаз Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1 : магистерская диссертация / Electrical properties of perovskite-type phases Ba3Sc2MO8 (M= Ti, Zr), Ba1.9K0.1In2O4.9F0.1

Корякин, К. Е., Koryakin, K. E. January 2015 (has links)
В данной работе твердофазным методом синтезированы образцы составов Ba3Sc2MO8 (где M=Ti4+, Zr4+). Растворным методом синтезирован оксифторид Ba1.9K0.1In2O4.9F0.1. Проведена рентгенофазовая аттестация образцов. Исследованы электрические свойства образцов методом электрохимического импеданса при варьировании термодинамических параметров внешней среды (Т, рО2, pH2O). Установлено влияние влажности на электропроводность образцов. Проведена дифференциация общей электропроводности на кислородно-ионный, электронный и протонный вклады. Выявлены условия доминирования протонного переноса. / In this work samples Ba3Sc2MO8 (where M=Ti4+, Zr4+) are synthesized by solid state reaction. Oxyfluoride with formula Ba1.9K0.1In2O4.9F0.1 is synthesized by solution method. Phase composition of the samples is certificated by X-ray diffraction. Electric properties of the samples are investigated by electrochemical impedance method at a variation of thermodynamic parameters of environment (T, pO2, pH2O). An influence of humidity on the conductivity of the samples is established. The total conductivity is differentiated on oxygen-ionic, electronic and protonic contributions. Conditions of domination of proton transfer are revealed.
18

De l'étude fondamentale d’hydrates d’acide fort par spectroscopie de vibration et de relaxation à l'application de leur super-conductivité protonique pour le développement d'une micropile à combustible / From the fundamental investigation of strong acid hydrates by means of vibration and relaxation spectroscopy to the application of their superprotonic conductivity for the development of a micro-fuel cell.

Desplanche, Sarah 05 October 2018 (has links)
Les piles à combustible (PAC) utilisant l’hydrogène comme vecteur, possèdent de bons rendements énergétiques et ne produisent aucun gaz à effet de serre. Elles se présentent donc aujourd’hui comme une solution propre et efficace. Cette alternative pourrait ainsi devenir un substitut possible aux hydrocarbures et pallier l’intermittence de certaines énergies renouvelables.Il existe différents types de PAC se distinguant principalement par la nature de l’électrolyte qui compose leur membrane échangeuse de protons. Utiliser les clathratehydrates d’acide fort comme électrolyte solide représente une alternative peu explorée à ce jour. Ces systèmes sont des solides cristallins nanoporeux constitués d’un réseau hôte de molécules d’eau formant des cavités nanométriques et encapsulant des molécules invitées.Dans le cas de clathrate hydrates d’acide fort, le confinement d’acides au sein des cages aqueuses génère des excès de protons délocalisés le long de leur réseau aqueux. A température ambiante, ces clathrate hydrates présentent alors une excellente conductivité protonique, plus élevée que celle des membranes de PACs actuellement utilisées. L’objectif de ce doctorat a été d’élaborer un électrolyte à base de clathrate hydrate d’acide hexafluorophosphorique (un des meilleurs conducteurs connus de cette classe de systèmes)sur la base d’une approche physico-chimique fondamentale, et de développer un montage miniaturisé de PAC intégrant ce nouvel électrolyte.A un niveau fondamental, il a été nécessaire de comprendre les facteurs régissant la conductivité protonique élevée de ces systèmes et en particulier, le lien existant entre la conductivité et le nombre d’hydratation (rapport molaire eau/acide dans le clathrate). Les mécanismes microscopiques mis en jeu ont été étudiés en s’appuyant sur la spectroscopie et l’imagerie Raman, complétées par des expériences de résonance magnétique nucléaire, de diffraction des rayons X et de spectroscopie d’impédance électrochimique. Un ensemble d’informations structurales (type de clathrate formé, transition de phase et stabilité thermodynamique), dynamiques (modes de vibration, diffusion des protons et cinétique) et chimiques (inclusion d’impuretés fluorées) a ainsi été obtenu. En tant que sonde sélective et locale, la technique de diffusion Raman a apporté des informations uniques. Elle a permis de sonder les interactions acides-cages, de proposer un protocole expérimental permettant de contrôler le nombre d’hydratation et également, de révéler pour la première fois une microstructuration du clathrate hydrate observée uniquement au-dessus d’un seuil d’hydratation. Ces propriétés physico-chimiques ont été corrélées aux mesures de conductivité, permettant de comprendre l’impact du nombre d’hydratation et des impuretés chimiques sur les performances de l’électrolyte solide. L’ensemble de ces résultats a permis d’aboutir à un développement technologique original. Une nouvelle micropile à combustible utilisant des clathrate hydrates d’acide hexafluorophosphorique comme électrolyte a été conçue. Ce développement offre ainsi une PAC aux performances comparables aux PACs actuellement disponibles et fonctionnant de la température ambiante à des températures négatives. / Fuel cells (FC) using hydrogen possess very good energy performance and produce no greenhouse gases. It presents itself today as a clean and efficient solution. This alternative could then become a possible substitute for fossil fuels and palliate for the intermittency ofcertain renewable energies.There are various types of FC, mainly distinguished by the nature of the electrolyte that composes their proton exchange membrane. Using strong acid clathrate hydrates as solid electrolyte represents an alternative for which very little is known nowadays. These systems are nanoporous crystalline solids consisting of a water host network forming nanometric cavities encapsulating guest molecules. In the case of strong acid clathrate hydrates, the confinement of acidic species within the aqueous cages generates proton excess that isdelocalized along their aqueous network. At room temperature, these clathrate hydrates have then excellent proton conductivity, which is higher than that of the FCs membranes currently used. The objective of this PhD was to develop an electrolyte based on hexafluorophosphoricacid clathrate hydrate (one of the best-known conductors of this class of system) on the basisof a fundamental physico-chemical approach, and to develop a miniaturized FC assemblyincorporating this new electrolyte.At a fundamental level, it was necessary to understand the driving factors responsible for the super-protonic conductivity of these systems and in particular, the relationship between the conductivity and the hydration number (i.e. water to acid molar ratio in the clathrate). The microscopic mechanisms have been studied by means of Raman spectroscopy and imaging, supplemented by nuclear magnetic resonance, X-ray diffraction and electrochemical impedance spectroscopy experiments. A set of results concerning the structure (clathrate type, phase transition and thermodynamic stability), the dynamics (vibrational modes, proton diffusion and kinetics) and the chemistry (inclusion of fluorinated impurities) has thus been obtained. As a selective and microscopic probe, the Raman scattering technique provided unique information. It allowed to probe the acid-cages interactions, to propose an experimental protocol monitoring the hydration number and also,to reveal, for the first time, a microstructuration of the clathrate hydrate only observed abovea hydration threshold. These physico-chemical properties have been correlated with the conductivity measurements, making it possible to understand the impact of the hydration number and of the chemical impurities onto the electrochemical performances of the solid electrolyte. All these results led to an original technological development. A new micro-fuel cell using hexafluorophosphoric acid hydrates as the electrolyte has been designed. This development offers a FC with performances comparable to the FCs currently available and operating from room temperature to negative temperatures.

Page generated in 0.0802 seconds