Spelling suggestions: "subject:"protoplanetary"" "subject:"planétaires""
11 |
Effet de la structure du disque sur la formation et la migration des planètesCossou, Christophe 28 November 2013 (has links) (PDF)
Au delà du système solaire et de ses planètes, nous avons maintenant un catalogue de quasiment 1000 exoplanètes qui illustrent la grande diversité des planètes et des systèmes qu'il est possible de former. Cette diversité est un défi que les modèles de formation planétaire tentent de relever. La migration de type 1 est un des mécanismes pour y parvenir. En fonction des propriétés du disque protoplanétaire, les planètes peuvent s'approcher ou s'éloigner de leur étoile. La grande variété des modèles de disques protoplanétaires permet d'obtenir une grande variété de systèmes planétaires, en accord avec la grande diversité que nous observons déjà pour l'échantillon limité qui nous est accessible. Grâce à des simulations numériques, j'ai pu montrer qu'au sein d'un même disque, il est possible de former des super-Terres ou des noyaux de planètes géantes selon l'histoire de migration d'une population d'embryons.
|
12 |
Modèles de synthèses de populations planétaires avec cavité magnétique et effets de marées stellaires / Models of planetary population synthesis with magnetic cavity and stellar tides.Cabral, Nahuel 12 June 2015 (has links)
Pour cette thèse, nous avons été intéressé par les effets de la cavité magnétique et les effets de marées stellaires sur nos modèles de populations de synthèses planétaires. La cavité magnétique a été proposé comme un mécanisme important de la formation planétaire, en cela qu'elle peut stopper la migration radiale de la planète vers l'étoile (Lin et al. 1995). Dans ce travail on a modifié l'équation de diffusion pour l'évolution radiale de la densité de surface du disque de gas (1D), afin de tenir compte de l'effet du couple magnétique sur le disque (Armitage et al. 1999). D'autre part les effets de marées ont été inclus par un modèle analytique (Benitez-Llambay et al. 2011). Pour ce travail, on a utilisé le modèle de formation planétaire de Bern (Mordasini et al 2009a), auquel nous avons inclus ces deux effets. Enfin, nous avons comparé la distribution orbitale synthétique à la distribution orbitale observée par Kepler (Howard et al. 2012).Finalement, un dernier chapitre traite un sujet différent du reste de la thèse. Nous avons testé l'accrétion de pebbles (ou "pebble mechanism") dans le modèle de formation de Bern. Ce chapitre, est en fait un premier pas vers un modèle plus complet. Cependant, nous avons montré que l'implémentation numérique fonctionne bien. / In this thesis, we have been interested on the effects of the magnetic cavity and the stellar tides in synthetic planet population. The magnetic cavity is thought be important at the formation phase since it can truncates the gaseous disk and potentially stops the inward migration of planets (Lin et al. 1995). In this work we modified the standard radial viscous equation in order to take into account the effect of the magnetic torque on the gaseous disk (Armitage et al. 1999). Moreover, the stellar tides have been included in an analytical way as in (Bénitez-Llambay et al. 2011). For this work, we used the planetary model of Bern (Mordasini et al. 2012) at which we included both effects. The end of the thesis compare the synthetic orbital distribution with the orbital distribution observed by Kepler (Howard et al. 2012).Finally, a last chapter treats a topic different than the rest of the thesis. We tested the so called pebble mechanism (Ormel&Klahr2010) in the planetary formation model of Bern. So far, this chapter is a first step to a more complete model. However, we show that the numerical implementation is working well.
|
13 |
Etude des parties internes des disques protoplanétaires observés par interférométrie / A study of the inner parts of protoplanetary disks observed by interferometryAnthonioz, Fabien 10 April 2015 (has links)
Les disques de gaz et de poussières entourant les étoiles jeunes sont d'une importance capitale pour notre compréhension de la formation planétaire. Les observations de ces disques permettent d'avoir un niveau de détails sans précédent sur ces derniers et apportent des contraintes toujours plus fortes sur leur structure et sur les modèles de formation planétaire. Les parties de ces disques les plus proches de l'étoile sont néanmois encore assez mal connues; en effet, pour pouvoir résoudre ces parties internes pour les étoiles jeunes les plus proches de la Terre, un télescope de 100 mètres de diamètre serait nécessaire, ce qui est technologiquement et financièrement impossible actuellement. L'interférométrie permet de contourner ce problème en combinant la lumière de paires de télescopes, permettant ainsi un plus grand pouvoir de résolution. Ma thèse à portée sur l'observation et l'étude des parties internes des disques circumstellaire d'étoiles de type T Tauri. Une étude statistique sur l'environnement de ces étoiles y est présentée, ainsi que leur modélisation par un modèle prenant en compte les mécanisme d'émission et de diffusion de la lumiere par la poussière. La modélisation de disque circumstellaires par un code de transfert radiatif et en combinant des données interférométriques, photométriques et spectroscopiques est aussi abordée. / Observing gas and dusty disks around young stars are of utmost importance for our knowledge about planetary formation. Observations of these disks bring unprecedented details about their structure and composition, and provide stronger and stronger constrains on planetary formation models. However, the inner parts of these disk are still barely known. indeed, a 100 m diameter telescope would be required in order to resolve these inner region, for the closest young stars; nowaday, the construction of such telescope is impossible technologically and financially. By combining the light of pairs of telescopes, the interferometry technique is able to reach the sufficient resolving power, and permits us to observe the inner parts of circumstellar disks. My thesis has been focused on the observation and study of the inner part of TTauri's circumstellar disks. I present in this manuscript a statistical study on the environment around these stars, along with its modeling by taking into account thermal emission and light scattering of the disk. Finally, I present a more complete modelling for some of these stars, done by constraining spectroscopic, interferometric and photometric datasets with a radiative transfer code.
|
14 |
Etude des effets de la magnétohydrodynamique non idéale sur la formation des étoiles de faible masse / Non-ideal magnetohydrodynamics in low-mass star formationMasson, Jacques 13 November 2013 (has links)
Le processus de formation d’étoiles se déroule selon plusieurs phases. Tout d’abord une phase à grande échelle, durant laquelle le nuage moléculaire se fragmente sous l’action de sa propre gravité et de la turbulence en coeurs denses gravitationnellement instables. Dans ces fragments le milieu est optiquement mince, l’énergie libérée par le travail de compression s’échappe sous forme de rayonnement, d’où un processus quasi isotherme. Lorsque le nuage devient optiquement épais à son propre rayonnement, la matière en effondrement forme un objet en équilibre hydrostatique appelé premier cœur dit de Larson. S’ensuit une phase d’accrétion, qui conduit ultimement à la dissociation du dihydrogène. Une partie du travail de compression est alors absorbée par l'énergie de dissociation de la molécule, et non plus convertie en énergie thermique, permettant à l'effondrement de recommencer. Lorsque que toutes les molécules de dihydrogene ont été dissociées, la phase adiabatique recommence et le second cœur de Larson (proto-étoile) est formé.L'ajout des éléments nécessaires au traitement de la magnétohydrodynamique (MHD) non-idéale dans le code à grille adaptative RAMSES constitue la première partie de la thèse. L'étude détaillée des stades ultimes (premier et second cœur de Larson) de la formation des étoiles constitue la seconde partie de la thèse. Cette étude a pu mettre en évidence des effets importants de la MHD non-idéale sur la répartition du champ magnétique et l'efficacité du transport de moment angulaire. / Stars formation occurs in several steps. First a large scale phase during which the molecular cloud undergo fragmentation due to its self-gravity and turbulence. In the gravitationally unstable fragments the medium is optically thin causing all the energy generated by the collapse to escape freely. This is called the isothermal compression phase. When the cloud becomes optically thick to its own radiation, an hydrostatic core forms: the first Larson core. Follow an adiabatic accretion phase ending up ultimately in the dissociation of dihydrogen molecules. Part of the energy from the gravitational collapse is absorbed by the chemical process allowing for another quasi isothermal collapse to start until depletion of dihydrogen molecules. When the adiabatic phase is restored, the second Larson core (proto-star) is formed.Coding the non-ideal magnetohydrodynamics (MHD) solver in the adaptive mesh refinement code RAMSES has been the focus for the first part of the thesis. The precise study of the last steps (first and second Larson core) of star formation is the second part of the thesis. This study highlighted the impact of non-ideal MHD on the magnetic field repartition and the efficiency of the angular momentum transport.
|
15 |
Morphologie et évolution des tourbillons de Rossby bidimensionnels dans les disques protoplanétaires / Structure and evolution of 2D Rossby vortices in protoplanetary disksSurville, Clément 11 December 2013 (has links)
Le rôle des tourbillons anticycloniques dans l'évolution des disques protoplanétaires et, en particulier, dans les mécanismes de formation des planétésimaux, est au coeur des défis actuels de l'astrophysique moderne. C'est pourquoi une étude approfondie de leur structure et de leur dynamique est primordiale.Grâce à un outil numérique spécifiquement développé pour l'étude des disques, nous avons revisité l'Instabilité en Ondes de Rossby dans le régime non linéaire, et découvert l'existence d'une cascade des modes de perturbation qui permet de mieux comprendre la formation des tourbillons par cette instabilité.Leur structure à été décrite par un modèle gaussien innovant, remarquablement en accord avec les résultats numériques. Grâce à un échantillon de près de 300 tourbillons, nous avons borné le domaine des dimensions radiales, azimutales et de la vorticité. Deux familles de tourbillons possibles ont été distinguées : (i) les tourbillons incompressibles, stables et quasi-stationnaires; (ii) les tourbillons compressibles, très mobiles et associés à l'émission d'ondes de densité. Leur persistance sur plus de 1000 rotations confirme l'observabilité de tous ces tourbillons. Enfin, nous avons caractérisé leur migration vers l'étoile en fonction de leur géométrie, du gradient de pression et de l'échelle de hauteur du disque. Pour la première fois, une expression analytique permet d'estimer le taux de migration en fonction de ces paramètres; l'échelle de temps pour tomber sur étoile peut aller de 10^6 à 100 rotations. Suivant un modèle de viscosité alpha, la perte de moment cinétique pourrait être suffisante pour maintenir un taux d'accrétion significatif dans la zone morte. / The role of anticyclonic vortices in the protoplanetary disk evolution and in how do planetesimals form are among the most important chalenges of the modern astrophysics. That is why an exhaustive study of the structure and the evolution of these vortices is necessary.Thanks to a numerical code specificly designed for the study of these disks, we have revisited the Rossby Wave Instability in the nonlinear regime, and have discovered that a cascade of the perturbation modes can explain the formation of the vortices created by this instability.We have described the structure of these Rossby vortices with a new gaussian vortex model, which accurately fits the numerical results. A sample of 300 different vortices led us to define the bondaries of the radial and azimuthal extent as well as the vorticity of the vortices. We have distinguished two main families : (i) the incompressible family, which is stable and quasi stationnary ; (ii) the compressible family, moving and exciting density waves. We found them surviving more than 1000 orbits, a clear confirmation of their observability.Finaly, we have caracterized the inward migration of the vortices as a fonction of their shape, their vorticity, but also of the pressure gradient and the scale height of the disk. For the first time, we exhibit a equation relating the migration rate to these parameters. The time scale of the migration ranges from 10^6 to just 100 rotations of the disk. Extremely steep pressure gradients are needed to reverse the migration to an outward regime. Following the alpha viscosity approch, the loss of kinetic momentum due to this migration would be sufficient to sustain the accretion in the dead zone.
|
16 |
Imagerie de l'environnement protoplanétaire des étoiles jeunes par interférométrie optique / Imaging the protoplanetary environment of young stellar objects by optical interferometryKluska, Jacques 06 October 2014 (has links)
Une manière efficace de contraindre la formation des planètes est l'étude des disques protoplanétaires. Les premières images de ces disques ont été obtenues dans les années 80 en infrarouge et en millimétrique. Ces images dévoilaient pour la première fois la morphologie de l'excès infrarouge vu dans les distributions spectrales d'énergies des étoiles jeunes. Depuis, de nets progrès ont été faits et, outre la détection directe de planètes, nous sommes capables de distinguer les perturbations que celles-ci pourraient engendrer dans ces disques. La région interne de ces disques, où la majorité des planètes sont détectées, est complexe car étant le théâtre de nombreux phénomènes encore mal contraints (sublimation de la poussière, vents, accrétion). Pour les étoiles jeunes les plus proches, observer ces régions revient à atteindre une résolution angulaire de l'ordre de la milliseconde d'arc, inatteignable avec un télescope monolithique. L'interférométrie optique permet de satisfaire cette contrainte. Cette technique consiste à combiner la lumière de deux télescopes ou plus afin de la faire interférer. Ces interférences permettent de contraindre la morphologie de l'objet observé à l'aide de modèles. Mais afin de comprendre les phénomènes en jeu il est nécessaire d'avoir une image indépendante de ces modèles. La reconstruction d'images est possible avec l'avènement récent d'interféromètres à 4 télescopes ou plus. Les premières images ont ainsi pu être reconstruites. Cependant, l'étoile centrale ne permet pas d'accéder facilement à l'image de l'environnement. Ma thèse a donc consisté à outrepasser cette difficulté en développant une méthode de reconstruction d'image adaptée à l'environnement protoplanétaire des étoiles jeunes. Elle consiste à séparer l'étoile centrale de l'image afin de reconstruire son environnement tout en prenant en compte la différence de température entre ces deux éléments. Grâce à cette méthode et aux instruments interférométriques du VLTI, j'ai pu reconstruire les images des premières unités astronomiques d'une douzaine d'étoiles de Herbig et de révéler leurs morphologies. J'ai ainsi pu appliquer une analyse géométrique originale afin de les caractériser. Enfin, j'ai analysé plus en détail un étoile particulière, MWC158, dont j'ai imagé la variabilité qui pourrait être interprétée comme une éjection de matière. Ma thèse démontre l'importance de la prise en compte des aspects chromatiques dans la reconstruction d'image ainsi que de l'adaptation de cette méthode à la spécificité des étoiles jeunes. / An effective way to understand the formation of planets is the study of protoplanetary disks. The first images of these disks were obtained in the infrared and the millimeter in the 80s. These images unveiled for the first time the morphology of the infrared excess seen in the spectral energy distributions of young stellar objects. Since then, significant progress has been made and, in addition to the direct detection of planets, we are able to distinguish the disruption they could cause in these disks. The inner region of these disks, where the majority of planets are found, is complex as being the scene of many phenomena still poorly constrained (dust sublimation, winds, accretion). For the closest young stars, observing these regions amounts to achieve an angular resolution of the order of a milliarcsecond, unattainable with monolithic telescopes. The optical interferometry can reach such a small angle. This technique consists in combining the light of two or more telescopes to make it interfere. These interferences can be used to constrain the morphology of the observed object by using models. But to understand the phenomena involved in the inner parts of young stellar objects, it is necessary to have an independent image. Image reconstruction is possible with the recent advent of interferometers with 4 or more telescopes. The first images were able to be rebuilt. However, the central star does not allow easy access to the environment morphology. The goal of my thesis was to bypass this difficulty by developing a method of image reconstruction which is adapted to the protoplanetary environment of young stars. It consists in separating the central star of the image to reconstruct its environment while taking into account the temperature difference between the two. With this method and the VLTI interferometric instruments, I reconstructed the images of the first astronomical unit of a dozen of Herbig stars and revealed their morphologies. I was able to apply a novel geometric analysis to characterize them. Finally, I have analyzed in more detail a particular star, MWC158, which I imaged the variability that could be interpreted as a matter ejection. My thesis demonstrates the importance of the inclusion of chromatic aspects in image reconstruction and adaptation of this method to the specific characteristics of young stars.
|
17 |
Effet de la structure du disque sur la formation et la migration des planètes / Effect of the disc structure on planets formation and migrationCossou, Christophe 28 November 2013 (has links)
Au delà du système solaire et de ses planètes, nous avons maintenant un catalogue de quasiment 1000 exoplanètes qui illustrent la grande diversité des planètes et des systèmes qu'il est possible de former. Cette diversité est un défi que les modèles de formation planétaire tentent de relever. La migration de type 1 est un des mécanismes pour y parvenir. En fonction des propriétés du disque protoplanétaire, les planètes peuvent s'approcher ou s'éloigner de leur étoile. La grande variété des modèles de disques protoplanétaires permet d'obtenir une grande variété de systèmes planétaires, en accord avec la grande diversité que nous observons déjà pour l'échantillon limité qui nous est accessible. Grâce à des simulations numériques, j'ai pu montrer qu'au sein d'un même disque, il est possible de former des super-Terres ou des noyaux de planètes géantes selon l'histoire de migration d'une population d'embryons. / In addition to the Solar System and its planets, we now have a database of nearly 1000 planets that emphasize the huge diversity of planets and systems that can be formed. This diversity is a challenge for planetary formation models. Type I migration is one of the mechanisms possible to explain this diversity. Depending on disc properties, planets can migrate inward or outward with respect to their host star. The huge parameter space of protoplanetary disc models can form a huge diversity of planetary systems, in agreement with the diversity observed in the nonetheless small sample accessible to us. Thanks to numerical simulations, I showed that within the same disc, it is possible to form super-Earths or giant planet cores, depending on the migration history of an initial population of embryos.
|
18 |
Évolution de la porosité des grains : une solution aux problèmes de formation planétaire ? / Evolution of grain porosity during growth : a solution to planetary formation barriers?Garcia, Anthony 04 September 2018 (has links)
Dans les disques protoplanétaires, les grains micrométriques croissent jusqu'à atteindre des tailles de planétésimaux avant de finalement former des planètes. Cependant,des études dynamiques ont montré qu'une fois que les grains atteignent une taille critique, ils dérivent rapidement vers l'étoile et y sont accrétés. Ce problème est connu comme la barrière de dérive radiale. De plus, des expériences en laboratoire ont montré que les grains peuvent fragmenter ou rebondir et ainsi arrêter la croissance avant les tailles kilométriques.Afin de passer outre ces barrières, plusieurs méthodes ont été proposés comme les pièges à particules (dans les vortex ou les sillons planétaires) qui demandent des évolutions dynamiques à grande échelle. Dans ce travail, nous choisissons d'étudier les propriétés intrinsèques de la poussière pendant leur croissance et plus particulièrement leur porosité.Nous développons un modèle d'évolution de la porosité pendant la croissance en fonction de la masse des grains pour plusieurs régimes d'expansion/compression (Kataoka et al. 2013, Okuzumi et al. 2012) et l'implémentons dans notre code SPH bifluide (Barrière-Fouchet et al. 2005). Nous trouvons que la croissance des grains poreux est accélérée en comparaison aux grains compacts et leur taille peut atteindre plusieurs kilomètres. De surcroît,la dérive est légèrement ralentie pour les grains poreux qui peuvent croître jusqu'à de plus grandes tailles avant de commencer à dériver vers l'étoile. Nous constatons aussi que les grains des régions externes du disque grossissent plus que quand l'effet de la porosité est négligé. Ces deux mécanismes peuvent aider les grains à outrepasser la barrière de dérive radiale, notamment en passant dans le régime de traînée de Stokes, et ainsi former des planétésimaux.Nous étudions aussi l'effet de la fragmentation et du rebond sur le comportement des grains. En considérant un seuil de fragmentation constant, nous observons que la croissance de grains poreux est retardée un temps par la fragmentation mais qu'elle se poursuit vers de grandes tailles et par conséquent, permet de passer outre les problèmes dus à la fragmentation et à la dérive radiale. Cependant, les grains très poreux sont plus fragiles et peuvent se fragmenter plus facilement entraînant une accrétion massive des poussières dans l'étoile. De plus, nous montrons que les effets du rebond peuvent être négligés devant ceux de la fragmentation.Enfin, nous observons également que la taille des monomères et du paramètre de viscosité turbulente peut avoir une influence sur l'évolution de la porosité et donc de la poussière dans le disque.La porosité permet donc de favoriser la croissance des grains et accélérer le découplage des grains. Les grains très poreux peuvent être plus sensibles à la fragmentation.Cependant, les effets collectifs de la poussière couplés à la porosité peuvent aider les grains à outrepasser les barrières de formation planétaire. La barrière de rebond peut être négligée dans le cas de grains poreux devant les autres barrières. Enfin,l'intensité de la turbulence altère la croissance et ainsi le devenir de la poussière.La taille des monomères modifie le facteur de remplissage sans toutefois impacter le découplage des grains dans les parties internes / In protoplanetary discs, micron-sized grains should grow up to planetesimal sizes in order to ultimately form planets. However, dynamical studies show that once they reach a critical size, they drift rapidly into the accreting star. This is known as the radial-drift barrier. Moreover, laboratory experiments have shown that grains can fragment or bounce, stopping the growth towards planetesimal sizes.In order to overcome those barriers, several methods have been proposed such as particles traps (e.g. vortices or planet gaps) which all involve large-scale dynamics.In this work, we choose to investigate the intrinsic properties of the grains during their growth, in particular their porosity.We thus consider the growth of grains with variable porosity as a function of their mass in several regimes of compression/expansion (Kataoka et al. 2013, Okuzumiet al. 2012) and implement it in our 3D SPH two-fluid code (Barrière-Fouchetet al. 2005).We find that growth is accelerated for porous grains that can reach kilometersizes. On the other hand, drift is slightly slowed down for porous grains that can grow up to larger sizes before drifting towards the star. As a result, grains in the outer regions of the disc reach larger sizes than when porosity is neglected. Those two mechanisms can help grains overcome the radial-drift barrier and form planetesimals.The Stokes drag regime appears to play a substantial part in maintaining grains in the disc.Considering a constant fragmentation threshold, we also find out that growth is delayed because of fragmentation but reaching large sizes and thus overcoming problems due to fragmentation and radial drift is still possible. However, very fluffy grains are fragile and can be easily disrupted leading to a massive accretion of dust into the star. Moreover, we show that the effects due to dust bouncing can be neglected compared to fragmentation.Finally, we investigate the influence of the size of monomers and -parameter on the evolution of porosity and then dust in the disc.Dust growth is accelerated by porosity and thus promotes grains decoupling. Very fluffy grains are more affected by fragmentation. However, dust collective effects and porosity can help grains to overcome planet formation barriers. Besides,the bouncing barrier can be neglected in the case of porous dust compared to other barriers. Finally, the intensity of turbulence can alter the growth and so the outcome of dust. The size of monomers modifies the grain filling factor without impacting dust decoupling in the inner parts of the disc
|
19 |
Infuence of volatiles transport in disks on giant planets composition / L'influence du transport des volatiles dans les disques sur la composition des planètes géantesAli Dib, Mohamad 21 September 2015 (has links)
Ce manuscrit présente des travaux originaux sur la théorie de la formation des planètes.Le but fondamental est de connecter la composition chimique des planètes géantes etdes petits corps avec les processus physiques et chimiques prenant lieu dans le disqueprotoplanétaire.1. Dans le chapitre 1 j'introduis les propriétés fondamentales des disques protoplané-taires ainsi que les bases de la théorie de formation des planètes.2. Dans le chapitre 2 j'attaque le problème du rapport C/O supersolaire mesurérécemment dans WASP 12b. J'élabore un modèle qui suit la distribution et transportde l'eau et du CO gazeux et solides à travers leurs di_usion, condensation,coagulation, gaz drag et sublimation afin de quantifer la variation du rapport C/Odans le disque en fonction du temps et de la distance. Mon modèle montre que,au fur et à mesure du temps, les vapeurs vont être enlever de l'intérieur de leurlignes de glaces respectives, avec le vapeur CO enlevé beaucoup plus lentement quela vapeur d'eau. Cette effet va augmenter le rapport C/O à l'intérieur de la lignede glace de l'eau d'une valeur initiale solaire (0.55) vers une valeur au voisinagede l'unité, permettant de former des planètes géantes avec des rapports C/O _ 1,comme WASP 12b. Je fnis ce chapitre en discutant les preuves observationnellesde cette enlèvement des vapeurs à l'intérieur des lignes de glaces.3. Dans le chapitre 3 j'utilise le même modèle pour interpréter la composition chimiqued'Uranus et Neptune. Je montre comment la formation de ces deux planètessur la sur-densité de glaces prédite par mon modèle sur la ligne de glace de CO peutexpliquer pourquoi ces planètes sont à la fois riches en carbone, pauvres en azote etavec des valeurs D/H sous-cométaires.4. Dans le chapitre 4 je change de sujet vers les propriétés chimiques des météoriteschondritiques, surtout leurs rapports D/H. J'utilise un modèle de disques à 2 couches(actif et morte) avec une code d'évolution D/H pour vérifier si les profiles thermiquesnon monotone trouvés dans ces disques peuvent expliquer la large gamme des valeursD/H trouvé entre les différents familles chondritiques. Je finis ce chapitre en discutantles implications de ce modèle des disques contenant des zones mortes sur laformation de Jupiter.5. Finalement je résume nos résultats dans Conclusions & perspectives, et finis enposant des questions que j'espère voir résolus prochainement. / In this manuscript I present multiple original works on planets formation theory. Themain goal is to connect the chemical composition of giant planets and small bodies to thephysical and chemical processes taking place in the protoplanetary disk.1. In chapter 1 I introduce the fundamental properties of disks and the basics ofplanets formation theory.2. In chapter 2 I tackle the supersolar C/O and subsolar C/H ratios measured recentlyin WASP 12b. I elaborate a model that tracks water and CO vapors and icesevolution through di_usion, condensation, coagulation, gas drag and sublimation inorder to quantify the variation of the C/O ratio as a function of distance and time.My model shows that, over time, vapors will get permanently depleted inside oftheir respective snowlines with CO getting depleted much slower than water. Thiswill increase the C/O ratio inside of the water snowline from the solar value of 0.55to near unity, allowing the formation of giant planets with C/O _ 1, such as WASP12b. I end this chapter by discussing the observational proofs for the existence ofsuch vapor depletions inside the icelines3. In chapter 3 I use the same model to interpret the chemical composition of Uranusand Neptune. I show how the formation of both planets on the CO snowline's icesoverdensity predicted by this model can explain why both planets are rich in carbon,poor in nitrogen and have subcometary D/H ratios.4. In chapter 4 I shift the discussion to the chemical properties of chondritic meteorites,mainly their D/H ratios. I use a snapshot from a layered (active + dead)zones disk model with a D/H ratio evolution code to check if the non monotonicthermal pro_les in these disks can explain the wide range of D/H ratios measuredin the di_erent chondritic families. I end this chapter by discussing the implicationsof the dead zone disk models for the formation of Jupiter.5. I _nally summarize my results in Conclusions & perspectives, and _nish bypointing out several relevant open questions to be hopefully resolved soon.
|
20 |
Mécanismes de transport dans les disques protoplanétaires et impact sur la formation des premiers solides / Mechanisms of transport in protoplanetary disks and impact on the formation of the first solidsCuello, Nicolas 25 September 2015 (has links)
L'objectif principal de cette thèse est de proposer de nouveaux mécanismes de transport de solides dans les disques protoplanétaires afin de résoudre le problème de la dérive radiale des solides causée par la friction du gaz. En effet, malgré d'importants efforts théoriques et expérimentaux, il reste difficile à expliquer comment de petites particules de poussière submillimétriques forment des blocs kilométriques dans les conditions qui règnent au sein des disques protoplanétaires. Je montre que les mécanismes de transport proposés dans cette thèse sont en mesure de résoudre ce problème de dérive et j'étudie leurs effets sur la formation des premiers solides. Dans un premier temps, je considère les effets de la photophorèse et des jets magnétiques sur le mouvement radial des grains dans les disques protoplanétaires. Le premier est dû aux effets thermiques du rayonnement stellaire sur la surface des grains, tandis que le deuxième est provoqué par les lignes de champ magnétique stellaire qui traversent le disque. Les résultats sont obtenus en résolvant les équations du mouvement des particules de façon numérique. Le transport induit par ces mécanismes a d'importantes conséquences pour la composition des météorites qui sont discutées dans le contexte de la nébuleuse solaire. Dans un deuxième temps, j'étudie la formation de pièges à particules causés par la présence de plusieurs planètes dans le disque grâce à des simulations hydrodynamiques. Ces résultats incluent la croissance des grains et sont directement comparés aux travaux similaires considérant une seule planète dans le disque. Le cas de l'étoile HD 100546, pour lequel les observations récentes suggèrent la présence de deux planètes dans le disque, est examiné en détail. L'évolution du disque en considérant différentes tailles de grain est étudiée au moyen de simulations hydrodynamiques SPH. Les distributions de la poussière et du gaz dans le disque sont particulièrement révélatrices car elles permettent de mettre à l'épreuve les différents scenarios proposés par les observations. L'étude de ces mécanismes montre que, selon leur taille et leur composition, les grains s'accumulent à différentes distances radiales dans le disque. Ces processus empêchent donc l'accrétion des solides par l'étoile et résolvent ainsi le problème de la barrière de dérive radiale. Les futures observations avec des instruments tels que ALMA, SPHERE et MATISSE permettront de mieux contraindre l'efficacité de ces mécanismes dans les disques protoplanétaires / The main goal of this work is to study new transport mechanisms of solids in protoplanetary disks and its implications for the composition of the first solids. The motion of solids inside the disk leads to the so-called radial-drift barrier caused by the gas aerodynamic drag, which is a severe problem for planet formation theory. In this context, it is hard to explain how sub-mm grains reach planetesimal sizes during the disk lifespan. First of all, I study the effects of photophoresis on the dust grains illuminated by the stellar radiation and quantify the efficiency of radial transport as a function of the particle properties. Then, I study the ejection of particles from the inner regions of the disk via the so-called stellar fountain model. Due to the stellar magnetic field which threads the disk, solid particles enter a jet that sends them outwards up to a few astronomical units. Both processes, photophoresis and jets, have important implications for the composition of meteorites which are discussed within the Solar Nebula scenario. In the last chapter, I study dust dynamics in multi-planetary systems through SPH simulations. The formation of particle traps in a disk with two planets is treated in detail and compared to previous work considering a single planet. Then I consider the case of HD 100546, a star with a disk which might harbor two planets according to recent observations, and study the disk evolution in different scenarios. By considering different grains sizes it is then possible to establish a link with interferometric observations of the system. We consider models with different planetary masses and radial distances in order to better constrain these quantities. The study of these mechanisms reveals that, according to particle size and composition, grains can pile up at different radial distances in the disk. This prevents the accretion by the central star by stopping the radial drift of solids, which shows that these mechanisms are good candidates to solve the radial-drift barrier. Future observations using ALMA, SPHERE and MATISSE will provide insights into the efficiency of these transport processes in protoplanetary disks
|
Page generated in 0.0563 seconds