Spelling suggestions: "subject:"pulsed electrical field""
21 |
Les composés phénoliques des raisins : étude du potentiel qualitatif et des procédés émergeants d'extraction / The phenolic compounds of grapes : study of qualitative potential and emerging processes of extractionEl Darra, Nada 21 January 2013 (has links)
Ce travail porte sur l’amélioration de l’extraction des composés phénoliques à partir des raisins tout au long de la chaîne de la vinification en rouge. La qualité des vins rouges est en grande partie déterminée par les composés phénoliques. Parmi les composés phénoliques, les anthocyanes, qui sont responsables de la couleur, et les tanins, à l’origine de la sensation d’astringence. Pour augmenter la quantité des composés phénoliques présents dans le vin, un développement des procédés permettant d’améliorer la diffusion des composés phénoliques durant la vinification en rouge doit être mis en jeu. Nous avons entamé notre étude par un suivi de la maturité phénolique des raisins rouges appartenant à différentes parcelles de la société château KSARA localisées dans la vallée de la Békaa tout en se servant des méthodes Glories (1&2) et ITV. Quant à l’amélioration de l’extractibilité des composés phénoliques durant la vinification en rouge, différents prétraitements ont été appliqués dans le but d’améliorer la diffusion de ces composés. Parmi ces procédés, les technologies suivantes ont été abordées dans notre étude: les électrotechnologies (CEP), les ultrasons, le chauffage modéré, le traitement enzymatique, la macération préfermentaire à froid et la thermovinification. Ces techniques permettent d’endommager ou de fragiliser les membranes et/ou parois cellulaires facilitant ainsi la libération du contenu cellulaire vers le milieu extérieur. Les cinétiques d’extraction des composés phénoliques ont pu être modélisées par le modèle empirique de Peleg et le modèle cinétique simplifié afin d’estimer les rendements d’extraction. De plus, dans ce travail, l’accent a été mis sur les propriétés antiradicalaires et antimicrobiennes des composés phénoliques extraits de différentes variétés de raisins fournis par la société Château KSARA. Pour valoriser les co-produits de la vinification, le chauffage ohmique pulsé (COP) a été appliqué sur le marc du raisin dans le but d’améliorer l’extraction de ses composés phénoliques. L'optimisation du choix de la date des vendanges et l'amélioration des procédés d’extractions des composés phénoliques durant la vinification en rouge, pourraient nous conduire à élaborer un vin d'une meilleure qualité. Ce travail étant effectué, il sera intéressant comme projet à venir de valider ces différents pré-traitements à grande échelle pour une perspective d’application industrielle. / This study focuses on improving the extraction of phenolic compounds from grapes throughout the chain of red winemaking. The quality of wine is mainly determined by the phenolic compounds. From these phenolic compounds, the anthocyanins, which are responsible of the color and tannins, the responsible of the astringency. In order to increase the amount of phenolic compounds present in wine, a development of methods used to improve the extraction of phenolic compounds during the red vinification should be discussed. We began our study by using two methods Glories (1&2) and ITV to monitor the phenolic maturity of red grapes grown in the vineyards in the province of Bekaa-Château KSARA S.A.L. Whereas for the improvement of the extractibility of phenolic compounds during the vinification, different pre-treatments were applied in order to ameliorate the diffusion of these compounds. Among these process, the following technologies were discussed in our study: the electrotechnologies (PEF), the ultrasound, the moderate heat treatment, the enzymatic treatment, the cold maceration and the thermovinification. These techniques are able to weaken the cell walls and facilitate the diffusion of grape’s phenolic compounds during vinification. Peleg’s equation and the simplified kinetic model were shown to be suitable for describing the extraction kinetics for phenolic compounds and for the estimation of the extraction yield of polyphenols. Furthermore, in this study, the antiradical and antimicrobial activities of phenolic compounds extracted from grapevine varieties of Château KSARA-Bekaa-Lebanon were analyzed. To valorize the by-products of the vinification, the pulsed ohmic heating (POH) was applied on the grape pomace in order to ameliorate the extraction of the phenolic compounds. The optimization of the choice of the harvesting date and the amelioration of the extraction of phenolic compounds during the red vinification, will conduce to elaborate a high quality of wine. After this study, it will be interesting to validate the different pre-treatments at large scale for a perspective of an industrial application.
|
22 |
Stimulation of the fermentation by pulsed electric fields : Saccharomyces cerevisiae case / Stimulation de l’activité fermentaire par champs électriques pulsés : cas de Saccharomyces cerevisiaeMattar, Jessy 25 June 2015 (has links)
L’intégration croissante des procédés innovants comme les ultrasons, les champs magnétiques, et les champs électriques pulsés a pour but d’améliorer et de stabiliser le déroulement des procédés de fermentation. Le champ électrique pulsé (CEP) est un procédé athermique généralement utilisé pour l’inactivation des pathogènes (Barbosa-Cánovas et al., 2001) ainsi que pour l’extraction des composés intracellulaires d’intérêt (El Zakhem et al., 2006a; Vorobiev & Lebovka 2006). Dans ce travail de thèse, nous proposons d’évaluer l’activité microbienne des cellules soumises à un traitement électrique modéré. Un intérêt particulier est apporté à des aspects fondamentaux comme la croissance et le métabolisme des cellules. Sur le plan technologique, le but fondamentale est de mettre en place et optimiser des protocoles de stimulation de microorganismes pour intensifier les bioprocédés. La fermentation de microorganismes stimulés par CEP a montré des cinétiques plus rapides que les levures non traitées. La stimulation de l’activité fermentaire s’est révélée grâce au suivi de la masse du milieu, les solutés solubles, l’absorbance, les sucres... L’optimisation des protocoles de stimulation a permis de réveler deux comportements logarithmique et saturé. Il a été montré une dépendance importante de l’énergie spécifique sur certains aspects physiologiques notamment la taille et le nombre de colonies. / The continually increasing integration of innovative technologies such as ultrasound, magnetic fields, and pulsed electric fields aims to improve and stabilize the course of fermentation processes. The pulsed electric field (PEF) is an athermal process generally used for pathogen inactivation (Barbosa-Canovas et al., 2001) and for the extraction of intracellular compounds of interest (El Zakhem et al., 2006a; Vorobiev & Lebovka 2006). In this thesis, we propose to evaluate the microbial activity of cells subjected to a moderate electric treatment. Special consideration is given to key aspects such as growth and cell metabolism. Technologically, the fundamental purpose is to implement and optimize microorganisms’ stimulation protocols to intensify their bioprocesses. The positive impact of PEF pre-treatment on yeast cells was shown by their faster fermentation kinetics compared to the control. This was proven by monitoring the weight of the ferment, the soluble solutes, the UV absorbance, and sugar consumption profiles. Two behaviors of electrostimulation, “logarithmic” and “saturated”, were revealed by optimization of the stimulation protocols. Finally, a relationship between the growth rate, the size of the colonies and the applied specific energy is deduced.
|
23 |
Study of cell membrane permeabilization induced by pulsed electric field – electrical modeling and characterization on biochip / Etude de la permeabilisation d’une membrane cellulaire par un champ électrique pulsé développement d’une modélisation électrique – caractérisation sur biopuces à cellulesTrainito, Claudia 04 December 2015 (has links)
Depuis plusieurs années, de nouvelles méthodologies basées sur l’utilisation du champ électrique pour agir ou caractériser les cellules ou les tissus cellulaires génèrent de nombreuses avancées et apportent des nouvelles promesses dans les laboratoires de recherche et dans l'industrie : diagnostic de cancer, ElectroChimioThérapie (insertion d’un médicament en perméabilisant les membranes des cellules), thérapie génique (insertion d’un gène thérapeutique), immunothérapie (vaccins anti-tumoraux obtenus par électrofusion de cellules dendritiques et cellules cancéreuses pour réactiver le système immunitaire).L’application d’ impulsions électriques à des cellules ou dans des tissus cellulaires induit un changement sur leurs propriétés, en particulier sur leurs membranes qui deviennent transitoirement perméables, laissant temporairement le passage aux ions et macro-molécules. Les phénomènes induits lors d’une perméabilisation par application de champ électrique ont été partiellement caractérisés en microscopie epi-fluorescence. Pour effectuer un suivi en temps réel de la dynamique du processus de l’électroperméabilisation, une voie prometteuse consiste à caractériser électriquement l’échantillon. Dans cet objectif, mon travail de thèse consiste à mettre en oeuvre le suivi en temps réel de l’évolution des caractéristiques électriques sur une large bande de fréquences d’un tissu cellulaire ou d’une cellule isolée, avant, pendant et après la sollicitation par un champ électrique pulsé.Dans le cadre de ma thèse un modèle du système biologique et de son environnement a été élaboré, afin de mieux décrire des phénomènes observés expérimentalement: effet des sollicitations électriques sur la viabilité cellulaire, sur la perméabilité de la membrane externe, effets induits sur les composés intracellulaires, dynamique de fusion membranaire. Le degré de perméabilisation de l’objet biologique (cellule ou tissu) dépend de manière fortement non-linéaire de nombreux paramètres, ce qui rend complexe l’élaboration de ce modèle et son interprétation. La détection de ce niveau de perméabilisation est effectuée en temps réel (mesure du niveau de perméabilisation avant, pendant et après l’application de l’impulsion électrique). In fine cette approche devrait permettre d’optimiser le taux de perméabilisation cellulaire en fonction de l’application considérée. Ce système de contrôle individuel du niveau de perméabilisation cellulaire pourrait à terme être parallélisé massivement sur une puce dédiée à l’électroporation d’un grand nombre de cellules. Afin d’avoir une vision multi-échelle des effets, l’étude a été menée sur plusieurs modèles expérimentaux: qui vont du tissu (échelle millimétrique) à la cellule unique, en passant par les échelles intermédiaires (caractérisation de spéroides cellulaires).Dans ces deux derniers cas (sphéroide, cellule unique) l’objet biologique est isolé dans une biopuce microfluidique équipée d’électrodes de mesure et d’application du champ (échelle micrométrique).Les micro-dispositifs que j’ai réalisé pour caractériser en temps réel la perméabilisation de cellules, intègrent une géométrie spécifique d’électrodes, ainsi que d'un réseau de canaux microfluidiques pour contrôler le débit de cellules Le degré de miniaturisation de ces puces permet de travailler au niveau de la cellule unique, et appliquer des champs électriques de forte amplitude, de forte fréquence, localisés spatialement. / The increasing interest for new methodologies based on the use of the electric field to characterize the cells or tissue cells and generate brought promising development in research laboratories and industry: cancer diagnosis, electrochemotherapy (insertion of a drug after cell membranes permeabilization), gene therapy (insertion of a therapeutic gene), immunotherapy (anti-tumor vaccines obtained by electrofusion of dendritic cells and cancer cells to activate the immune system).The application of electrical pulses to cells or cell tissues induces a change in their properties, in particular on their membranes which become transiently permeable, and temporarily allow the passage of ions and macromolecules. Effect linked to the permeabilization phenomenon have been partially characterized by epi-fluorescence microscopy. Nevertheless, in order to perform the real-time monitoring of the electroporation process and know its dynamics, the electrical sample characterization is employed. Thus the aim of this work is to implement a real-time monitoring of dielectrical characteristics changes, on a wide frequency range, of a cellular tissue or a single cell, before, during and after the pulsed electric field application.As part of my thesis a model of the biological system has been developed to better describe the phenomena observed experimentally: effect of electrical stress on cell viability, on the permeability of the outer membrane, induced effects on the intracellular compounds, dynamics of membrane fusion.The degree of permeabilization of the biological sample (cells or tissues) is non linearly dependent of several parameters, which makes complicated the development of the model and its interpretation.The detection of a specific level of permeabilization is done in real time (measure of the level of permeabilization before, during and after the electric pulses application). This cell permeabilization level control could eventually be parallelized on a chip dedicated to the electroporation of a large number of cells. The latter can be used to optimize the electric pulses parameters in order to reach the desired permeabilization level. In order to have a multi-scale overview of the phenomenon, the study was performed on different size-level: from the tissue level (millimeter scale) to the single cell model through the intermediate scales (cell spéroides characterization).In the latter two cases (spheroid, single cell) the biological sample is isolated in a microfluidic biochip where the electric field solicitation are applied (micrometer scale).The microdevice designed and fabricated during this work, allows the real time characterization of the cell permeabilization. Furthermore the miniaturization of the system is crucial to work at the level of the single cell, and make possible the application of electrical fields of high amplitude, high frequency and spatially localized.
|
24 |
Champs électriques pulsés et décharges électriques de haute tension pour l’extraction et la stabilisation en oenologie / Pulsed electric field and high voltage electrical discharge for the extraction and stabilization in oenologyDelsart, Cristele 13 December 2012 (has links)
La filière viti-vinicole se doit de trouver des solutions au cours des années à venir afin de réduire son impact carbone de 20% et de proposer rapidement des alternatives au dioxyde de soufre. Ainsi, ce travail de thèse sur les champs électriques pulsés propose aux professionnels du vin une éco-innovation qui pourrait aider à répondre à ces deux problématiques. L’éco-innovation est de plus en plus considérée comme la clé de la compétitivité future dans le cadre du développement durable. Toutefois, avant d’être intégrée dans la production du vin, l’éco-innovation doit démontrer sa performance et son efficacité sans nuire à la qualité du produit et à la sécurité des consommateurs et doit être approuvée par les instances gouvernementales (OIV, UE...). A ce titre, la thèse a reçu un soutien financier conjoint du CIVB et de l’ADEME. Le principe des Champs Electriques Pulsés (CEP) est d’appliquer à un produit des impulsions électriques de quelques kilovolts durant un temps très court (quelques microsecondes) et répétées n fois. Les cellules contenues dans le produit traité (raisins, moût ou vin) voient leur potentiel transmembranaire augmenter jusqu’à l’induction de pores dans les membranes. L’irréversibilité des pores aboutit à l’extraction des composés cellulaires mais aussi à la mort des cellules. Ainsi, cette technologie, suivant le moment de son application en vinification et les paramètres opératoires, permet l’extraction des composés d’intérêts organoleptiques tels que les polyphénols mais aussi l’inactivation des microorganismes. Les CEP prennent en compte trois aspects importants pour la durabilité d’une technologie: l'environnement, l'économie et la qualité. En effet, cette technique a une série d'avantages pour le producteur de vins: elle est propre, rapide, peu chère, efficace, industrialisable et automatisable. Comparée à d’autres traitements tels que la pasteurisation, la filtration stérilisante, la thermovinification, la macération à chaud ou à froid, la cryoextraction ou encore la flash-détente, la consommation d'énergie est faible (quelques dizaines de kWh/tonne). La technologie des CEP est respectueuse de l’environnement puisqu’elle nécessite peu d’énergie et aucun intrant chimique. Elle est rapide et efficace car la durée du traitement n’est que de quelques dizaines à centaines de millisecondes. Enfin, les CEP sont une technologie non thermique et donc ne dégradent pas les molécules thermosensibles telles que les arômes. Les objectifs de ce travail de recherche ont été de comprendre l’effet des CEP sur les cellules, de déterminer les paramètres de traitement des CEP à employer pour réaliser l’extraction de composés d’intérêt des raisins et pour inactiver des microorganismes afin de stopper la fermentation alcoolique des vins liquoreux et de stabiliser microbiologiquement les vins rouges avant leur mise en bouteille en conservant la qualité du produit traité. / The wine industry needs to find solutions in the coming years to reduce its carbon footprint by 20% and quickly propose alternatives to sulphur dioxide usage. This work on pulsed electric fields offers wine professionals an eco-innovation that could help to address these two issues. Eco-innovation is increasingly seen as the key to future competitiveness in the context of sustainable development. However, before being integrated in wine production, eco-innovation must demonstrate its performance and efficiency without compromising product quality and consumers safety so that it could be approved by government authorities (OIV, EU ...). As such, this thesis has received a joint financial support from the CIVB and the ADEME. The principle of Pulsed Electric Field (PEF) is to apply to a product; electrical pulses of a few kilovolts in a very short period time (a few microseconds) and then repeated n times. During treatment (grapes, grape must or wine) cells transmembrane potential increases till the induction of pores in the membranes. The irreversibility of the pores leads not only to the extraction of cellular components but also cell death. Thus, depending on the time of this technology application in winemaking and operating parameters, allows the extraction of sensory interests compounds such as polyphenols or the inactivation of microorganisms. PEF takes into account three important aspects to the sustainability of a technology: environment, economy and quality. This technique has a number of advantages for wine producers: clean, fast, inexpensive, efficient, industrializable and automated. Compared to other treatments such as pasteurization, sterile filtration, thermovinification, hot or cold maceration, cryoextraction or flash-release, its energy consumption is low (a few tens of kWh / tonne). PEF technology is environmentally friendly, as it requires little energy and no chemical inputs. It is fast and efficient because the processing time is only a few tens to hundreds of milliseconds. Finally, this technique is a non-thermal and therefore does not degrade the heat-sensitive molecules such as flavours. The objectives of this research work was to understand the effect of PEF on the cells, to determine the processing parameters during the extraction of compounds of interest grapes and to inactivate microorganisms in order to stop alcoholic fermentation of sweet wines and stabilize microbiologically red wines before bottling maintaining the quality of the processed product.
|
25 |
Valorisation des coproduits issus des industries d’agrumes : extraction des molécules bioactives par des technologies innovantes / Valorization of byproducts from citrus industries : extraction of bioactive molecules using innovative technologiesEl Kantar, Sally 25 October 2018 (has links)
Ce travail de doctorat consiste à valoriser les coproduits issus des industries d’agrumes par des technologies innovantes. Le pressage des agrumes produit des millions de tonnes de déchets par an dans le monde. Ces déchets (peaux, pulpes et pépins) sont généralement dédiés à l’alimentation animale ou bien éliminés par compostage ou incinération. Cependant leur contenu en molécules bioactives conduit à plusieurs voies de valorisation. Vu que les peaux constituent à peu près la moitié de la masse des déchets d’agrumes, les études ont été faites sur la valorisation des peaux de différents types d’agrumes. Les méthodes conventionnelles généralement utilisées pour l’extraction des molécules d’intérêt (extraction solide-liquide, hydrodistillation) présentent plusieurs désavantages tels que l’utilisation des solvants coûteux et toxiques, les longues durées d’extraction et la consommation élevée en énergie. Pour cette raison plusieurs technologies innovantes non thermiques telles que les Champs Electriques Pulsés (CEP), les Décharges Électriques de Haute Tension (DEHT) et les ultrasons (US) et thermiques comme les microondes (MO) et les infrarouges (IR) ont été testées dans ce travail de thèse, pour la valorisation des coproduits d’agrumes. Les agrumes entiers (oranges, pomelos, citrons) sont traités par les CEP à une intensité de 3 kV/cm et l’extraction du jus d’agrumes et des polyphénols a été réalisée par pressage. L’étude de la perméabilisation cellulaire induite par les CEP a été réalisée par plusieurs méthodes et a montré que les degrés d’endommagement diffèrent selon le type d’agrumes traités. L’électroporation des cellules, induite par les CEP a permis d’augmenter les rendements en jus après pressage et d’améliorer le passage des polyphénols des peaux d’agrumes dans le jus. Ce qui explique la possibilité d’obtention d’un jus riche en polyphénols en traitant les agrumes par les CEP avant leur pressage. Parmi les solvants testés pour l’extraction des polyphénols à partir des peaux d’agrumes, l’eau est le moins efficace. L’ajout de 20% de glycérol dans l’eau a modifié la polarité du milieu et a amélioré l’extraction des polyphénols. L’utilisation d’un mélange enzymatique a favorisé la libération des polyphénols piégés dans les polysaccharides. Les solvants eutectiques profonds préparés, ont été aussi efficaces que les mélanges hydro éthanoliques. Pour améliorer d’avantages l’extraction dans les différents solvants verts ou dans le mélange enzymatique, les peaux d’agrumes ont été prétraitées par les DEHT dans l’eau. L’effet mécanique des DEHT, capable de fragmenter les peaux a permis d’améliorer l’extraction des polyphénols 6 dans les différents solvants. L’intensification de l’extraction des polyphénols a été aussi réalisée par les IR et les US. L’extraction des polyphénols par les IR a été optimisée en ayant recours à la méthodologie de surface de réponse. Le chauffage par les IR n’a pas altéré les polyphénols extraits qui ont gardé des activités antifongiques et anti-mycotoxinogènes importantes. Le prétraitement des peaux d’agrumes par les IR sans solvant a fragilisé les structures cellulaires, ce qui a permis d’augmenter la diffusion des polyphénols durant le traitement avec les US. / This work consists of the valorization of citrus by-products with innovative technologies. Citrus pressing produces millions of tons of waste per year worldwide. This waste (peels, pulps and seeds) is generally dedicated to animal feed or eliminated by composting or incineration. However its content in bioactive molecules leads to several ways of valorization. Since peels present about half of the citrus waste mass, studies have been focused on the valorization of citrus peels by the extraction of bioactive compounds. Conventional methods generally used for the extraction of bioactive compounds (solid-liquid extraction, hydrodistillation) have several disadvantages such as the use of expensive and toxic solvents, long extraction times and high energy consumption. For this reason, several innovative non-thermal technologies such as Pulsed Electric Fields (PEF), High Voltage Electrical Discharges (HVED) and Ultrasounds (US) and thermal treatments such as microwaves (MO) and infrared (IR) have been tested for the valorization of citrus by-products. Whole citrus fruits (oranges, pomelos, lemons) were PEF treated at an intensity of 3 kV/cm, then citrus juice and polyphenols were extracted by pressing. The study of the PEF-induced cell permeabilization was conducted by several methods and showed that the degree of damage varied according to the type of the treated fruit. The electroporation of the cells induced by the PEF, allowed an increase the juice yields after pressing and improved the liberation of the polyphenols from the citrus peels into the juice. This explains the possibility of obtaining a juice rich in polyphenols by treating the whole fruits with PEF before pressing. Among the solvents tested for the extraction of polyphenols from citrus peels, water is the least effective. The addition of 20% glycerol to water changed the polarity of the medium and improved the extraction of the polyphenols. The use of an enzyme mixture enhanced the release of the polyphenols related to the polysaccharides. Deep eutectic solvents have been as effective as hydroethanolic mixtures. To improve the yields and the kinetics of extractions in the different green solvents and in the enzyme mixture, citrus peels were pretreated with HVED in water. The mechanical effect of HVED, based on the fragmentation of the peels has improved the extraction of polyphenols in the various solvents. The intensification of polyphenols extraction was also conducted by IR and US. The extraction of polyphenols by IR was optimized using the surface response methodology. IR heating did not alter the extracted polyphenols which have significant antifungal and anti-mycotoxinogenic activities. The pretreatment of citrus peels with IR weakened the cell structures, increasing thus the diffusion of polyphenols during US treatment.
|
26 |
Vers une amélioration quantitative et qualitative de l'extraction des composés phénoliques du marc de raisin rouge à l'aide d'électrotechnologies / Towards a quantitative and qualitative enhancement of the extraction of phenolic compounds from red grape pomace using electrotechnologiesBrianceau, Silène 18 December 2015 (has links)
Ce travail porte sur l’amélioration quantitative et qualitative du procédé de fabrication d’extraits de marc de raisin riches en composés phénoliques. Les effets de technologies alternatives de traitement de la biomasse végétale sur l’amélioration des rendements d’extraction ont été étudiés à l’échelle laboratoire. Leurs impacts sur la qualité biochimique des extraits obtenus ont été évalués via la caractérisation analytique des composés phénoliques.Une étude comparative de différentes technologies alternatives de pré-traitement en milieux aqueux (décharges électriques haute tension (DEHT), champs électriques pulsés (CEP) et ultrasons (US)), d’un marc de raisin issu d’un procédé de vinification en rouge, en amont de la diffusion, a permis d’approfondir la compréhension des phénomènes induits et de leurs effets sur l’amélioration de l’extractabilité des composés. Nous avons montré que le choix du procédé à mettre en oeuvre était relatif au type de composés phénoliques ciblés : la localisation tissulaire de ces composés est apparue comme un facteur-clé pour optimiser leur extraction. La technologie de pré-traitement par CEP, induisant un endommagement localisé des structures végétales, s’est avérée particulièrement intéressante pour extraire sélectivement les anthocyanes situés au niveau des couches de cellules supérieures de l’hypoderme de la pellicule de raisin. Nous avons, par la suite, montré que le pré-traitement par CEP, en milieu sec (sans ajout de solvant) et à intensité de champ électrique modérée, était plus efficace pour la récupération sélective des anthocyanes et moins énergivore qu’un traitement CEP de forte intensité d’une suspension aqueuse de marc. Pour ce faire, nous avons mis en place une nouvelle configuration de cellule qui nous a permis d’étudier la faisabilité d’un pré-traitement en milieu sec, sans ajout de liquide conducteur, et d’optimiser les paramètres opératoires (masse volumique, intensité du champ électrique, énergie spécifique) influençant la récupération subséquente, lors de la diffusion, des composés phénoliques. Afin d’intégrer notre démarche expérimentale dans une approche systémique de type « bioraffinerie », l’accent a été mis sur le traitement du marc réhydraté à posteriori de la diffusion. L’intensification du pressage de ce marc par chauffage ohmique (CO) permet d’améliorer les rendements globaux d’extraction tout en assurant un premier niveau de déshydratation de cette biomasse.Un bilan technico-économique montre que l’application successive des électro-technologies (pré-traitement par CEP en milieu sec et pressage assisté par CO à posteriori de la diffusion) permet une amélioration des rendements massiques d’extraction de l’ordre de 30 % comparativement au procédé classique. Ce gain matière compense l’augmentation du coût de production (+ 2.7 % comparativement au procédé classique) et résulte une diminution du coût de production de l’extrait (7.3 €/kg vs 9.4 €/kg pour le procédé classique). / This work aims at studying the effect of alternative technologies for the processing of winery byproducts on the improvement of extraction yields at laboratory scale. Their impacts on the biochemical quality of the extracts obtained from grape pomace were evaluated by the characterization of the extracted compounds. A comparative study on the effects of different alternative pre-treatment (pulsed electric field (PEF), high voltage electric discharges (HVED) and ultrasounds (US)) of aqueous suspensions of red grape pomace, prior to the extraction step, was realized with the specific objective of understanding the induced phenomena. The electroporation induced by PEF may allow the specific recovery of anthocyanins that are located in the upper cell layers of the hypodermis by facilitating the solvent penetration to particular skin tissues of grape. The location of targeted compounds with respect to tissue structures seems to be a key issue to optimize their extraction. As a consequence, we subsequently examined the feasibility of a PEF pre-treatment of relatively low humidity grape pomace for the enhancement of bioactive compounds extraction. We demonstrated that a relatively dry pomace (RH ≈ 55 %) can be effectively treated by PEF after optimal densification using a suitable configuration of the PEF cell. The PEF pre-treatment of a densified fermented grape pomace, at moderate electric field strengths, requires less output current and lower specific energy and is also more efficient for the selective recovery of anthocyanins than Hi-PEF pre-treatment of an aqueous suspension of grape pomace. We finally focused on the treatment of rehydrated grape pomace following the diffusion step. The enhancement of pressing of the grape pomace by ohmic heating allowed the recovery of two fractions: a solid fibrous residue partly dehydrated which could be further valorized as an agro-material or in feeding, and an extract, particularly rich in bioactive components.The technical-economic assessment shows that the successive application of electro-technologies (pre-treatment of grape pomace in dry environment by PEF followed by a pressing step assisted by ohmic heating) lead to an improvement of extraction yields of about 30 % compared to the conventional method. This mass improvement offset the increased production costs (+ 2.7 % compared to the conventional process) by reducing the total production costs of the extract (7.3 €/kg vs 9.4 €/kg for the conventional process).
|
27 |
Electropermeabilization of inner and outer cell membranes with microsecond pulsed electric fields : effective new tool to control mesenchymal stem cells spontaneous Ca2+ oscillations / Electroperméabilisation des membranes internes et externes des cellules par des impulsions électriques microsecondes : un outil efficace pour contrôler les oscillations calciques spontanées dans les cellules souches mésenchymateusesHanna, Hanna 13 December 2016 (has links)
Les champs électriques pulsés sont largement utilisés dans la recherche, la médecine, l'industrie alimentaire et d'autres procédés biotechnologiques. L'interaction d'une impulsion de 100 µs avec la membrane plasmique et la membrane du réticulum endoplasmique a été évaluée dans deux types cellulaires différents. La perméabilisation des organites cellulaires avec ce type d'impulsions est démontrée expérimentalement pour la première fois. L'utilisation d'une telle impulsion afin de contrôler les oscillations calciques spontanées dans les cellules souches mésenchymateuses humaines issues du tissu adipeux a été évaluée. En créant des pics calciques électro-induits d’amplitudes différentes, l'impulsion peut ou bien induire un pic calcique supplémentaire ou bien inhiber les oscillations spontanées pour quelques dizaines de minutes. Cette inhibition rend possible d’imposer à la cellule des pics d’amplitude et de fréquence désirés. Un essai d’application de l'impulsion 100 µs à des cellules souches subissant une différenciation osseuse a aussi été réalisé. Une impulsion électrique semble retarder la différenciation. Lors d'une différenciation osseuse, plusieurs couches cellulaires ont été observées. La caractérisation de ces couches a donné des résultats qui pourraient aider à obtenir des ostéoblastes matures dans un temps moindre que la normale. L'utilisation des champs électriques pulsés microsecondes, pour perméabiliser la membrane plasmique et les membranes internes des cellules, ainsi que pour moduler les concentrations du calcium intracellulaire, semble donc très intéressante pour étudier le rôle du calcium dans de nombreux processus physiologiques et pour manipuler les dynamiques calciques (oscillations, vagues, pics) dans différents types de cellules. Ainsi, cette technologie simple, facile à appliquer et disponible dans beaucoup de laboratoires serait envisageable pour la modulation et le contrôle de fonctions cellulaires basiques telles que la prolifération, la différenciation et l'apoptose. / Pulsed electric fields are widely used in research, medicine, food industry and other biotechnological processes. The interaction of one 100 µs pulse with the plasma membrane and the endoplasmic reticulum membrane was evaluated in two different cell types. Pulse amplitude ranged between 100 and 3 000 V/cm. Organelles membrane permeabilization using this kind of pulses was experimentally demonstrated for the first time. The use of such a pulse to control the spontaneous calcium oscillations in human-adipose mesenchymal stem cells was also assessed. By creating electro-induced calcium spikes of different amplitudes, the pulse can either add a supplementary spike, or, on the contrary, inhibit the spontaneous oscillations for some tens of minutes. During this inhibition period, the electric pulse-mediated addition of calcium spikes of desired amplitude and frequency is still possible. The delivery of 100 µs pulses to stem cells undergoing osteodifferentiation was also performed. The electric pulse seemed to delay the differentiation. Moreover, during osteogenic differentiation, cells cultures displayed an organization in a few cell layers. The characterization of these layers gave results that may help to obtain mature osteoblast in less time than usual one. The use of the microsecond electric pulses technology to permeabilize the plasma and the internal cell membranes as well as to modulate internal calcium concentrations is therefore interesting to study the role of calcium in many physiological processes and to manipulate the cell calcium dynamics (oscillations, waves, spikes) in different cell types. Doing so, this available, simple and easy to apply technology could be used for the modulation and the control of basic cellular functions such as proliferation, differentiation and apoptosis.
|
28 |
Chip Scale Tunable Nanosecond Pulsed Electric Field Generator for ElectroporationKadja, Tchamie 30 May 2019 (has links)
No description available.
|
Page generated in 0.0547 seconds