• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 5
  • Tagged with
  • 21
  • 17
  • 16
  • 13
  • 13
  • 11
  • 11
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchung von modernen Magnetkreismaterialien und Wicklungstechnologien für energetisch hocheffiziente Antriebsmotoren

Lindner, Mathias 23 October 2009 (has links)
Vor dem Hintergrund steigender Energie- und Rohstoffpreise stellen die Anwender elektrischer Antriebe zunehmend die Forderung nach einer wesentlichen Erhöhung des Wirkungsgrades der elektrischen Maschinen. Um einerseits Masse, Bauvolumen und Material zu sparen, andererseits aber auch die Verluste in der elektrischen Maschine zu senken, müssen moderne Magnetkreiswerkstoffe und Wicklungstechnologien angewendet werden. Im Rahmen der Diplomarbeit sind verschiedene Varianten energieeffizienter Elektromaschinen zu untersuchen. Hierbei sind insbesondere folgende Ausführungsformen detailliert zu betrachten: • Permanenterregte Synchronmaschine mit Si-legiertem Blech (Referenz) • Permanenterregte Synchronmaschine mit Co-legiertem Blech • Permanenterregte Synchronmaschine mit Ni-legiertem Blech • Einsatz von SMC (Soft Magnetic Compound, Pulververbundwerkstoff) • Permanenterregte Synchronmaschine mit Zahnspulenwicklung • Sinnvolle Kombinationen der o.g. Punkte Die Untersuchungen sollen sich dabei auf Antriebsmotoren im Leistungsbereich um 1 kW bei Drehzahlen von 1400 bis 3000 min−1 erstrecken. Für jede Variante ist mit Hilfe von FEM-Berechnungen der Magnetkreis im Sinne geringster Verluste zu optimieren und der zu erwartende Wirkungsgrad im Bemessungspunkt abzuschätzen. Darüber hinaus sind Referenzmessungen an einer konventionellen permanenterregten Synchronmaschine vorzunehmen, um die erhaltenen Ergebnisse sinnvoll einordnen zu können.
12

Untersuchungen zur Herstellung von pulvermetallurgischen Halbzeugen unter Verwendung eines kontinuierlichen Sedimentationsprozesses

Riecker, Sebastian 18 March 2021 (has links)
Ziel der vorliegenden Arbeit ist es, die Herstellung von Grünkörpern mit vereinzelt unter Zentrifugalkraft sedimentierenden Partikeln und kontinuierlicher Partikelzufuhr zu untersuchen und ihre Eignung als neue Herstellungsvariante für metallische Grünteilhalbzeuge zur weiteren Verarbeitung mittels CNC-Zerspanung zu bewerten. Zur umfassenden Einordnung der Herstellungsmethode untergliedert sich die Zielstellung zum einen in die Beleuchtung des Einflusses des Ausgangspulvers auf die Packungscharakteristik der Sedimente. Dabei sollen vorteilhafte Partikelgrößenverteilungen identifiziert und typische Packungsphänomene bei der vereinzelten Sedimentation aufgedeckt werden. Zum anderen richtet sich der Fokus auf die Untersuchung prozessbedingter Einflüsse. Ziel ist hier die Ermittlung von Prozessgrenzen und erreichbaren Gründichten sowie die Identifikation potentieller Defektquellen. Alle Untersuchungsschwerpunkte werden im Hinblick auf den Sinterschritt bewertet. / The aim of the present work is to investigate the production of green bodies with particles sedimenting individually under centrifugal force and continuous particle feeding and to evaluate their suitability as a new manufacturing variant for metallic semi-finished green parts for further processing by means of CNC machining. For a comprehensive classification of the manufacturing method, the objective is subdivided on the one hand into the examination of the influence of the starting powder on the packing characteristics of the sediments. In this context, advantageous particle size distributions are to be identified and typical packing phenomena in isolated sedimentation are to be revealed. On the other hand, the focus is on the investigation of process-related influences. The aim here is to determine process limits and achievable green densities as well as to identify potential defect sources. All investigation foci will be evaluated with respect to the sintering step.
13

High strength Al-Gd-Ni-Co alloys from amorphous precursors

Wang, Zhi 03 July 2014 (has links)
Amorphous and nanostructured Al-based alloys have attracted significant interest owing to their promising properties, including high strength combined with low density. Unfortunately, the production of these advanced materials is limited to powders or ribbons with thickness of less than 100 micrometers due to the reduced glass forming ability of the Al-based alloys. Powder metallurgy through pressure-assisted sintering is a good solution to overcome the size limitation of these materials. In this thesis, Al84Gd6Ni7Co3 glassy powders were consolidated into high-strength bulk materials by hot pressing. The sintering behavior and the microstructural evolution during hot pressing were analyzed as a function of temperature. The results reveal that, through the careful control of the sintering temperature, the combined devitrification and consolidation of the amorphous Al84Gd6Ni7Co3 powders can be achieved, leading to bulk samples with the desired hybrid microstructure and with excellent room temperature mechanical properties. Beside the sintering temperature, the microstructural state of the starting material is critical in order to obtain bulk samples with the desired microstructure and related properties. Consequently, the variation of the initial structural state of the powders as well as of their thermal stability and phase evolution during heating may be used for further tuning the mechanical performance of the hot pressed Al84Gd6Ni7Co3 samples. In order to analyze this aspect, ball milling was used to vary the crystallization behavior of the gas-atomized Al84Gd6Ni7Co3 glassy powder. The influence of milling on microstructure and thermal stability was investigated as a function of the milling time. The results show that the traces of crystalline phases present in the as-atomized powder decrease gradually with increasing the milling time. The thermal stability of the fcc-Al primary phase increases while the thermal stability of the intermetallic phases decreases with increasing milling. Moreover, significant improvement in hardness occurs after milling, which is attributed to the amorphization of the residual crystalline phases present in the as-atomized powder. These finding demonstrate that milling is an effective way to change the initial structural state of the powders and to control the thermal stability of the material. The effect of the microstructural state of the starting material on the mechanical properties of the consolidated samples was investigated in detail. For this, the milled Al84Gd6Ni7Co3 glassy powders were consolidated into bulk specimens by hot pressing. These materials exhibit superior mechanical properties than the samples produced from the as-atomized powder: record high yield strength of 1.7 GPa and fracture strength exceeding 1.8 GPa. This is combined with a plastic strain of about 4 %, Young’s modulus of 120 GPa and density of 3.75 g/cm3. A bimodal microstructure consisting of coarse grained and fine grained regions was achieved in the hot pressed samples by properly controlling the milling process. The exceptionally high strength is attributed to the increased volume fraction of the fine regions, whereas the plastic deformation is favored by the coarse regions, which are able to hinder crack propagation during loading. In addition, the fracture toughness is also improved by the existence of the coarse regions. The tribological properties of the Al84Gd6Ni7Co3 bulk samples were also evaluated. The wear resistance of the bulk samples produced from the milled powder is enhanced with respect to the specimens fabricated from the as-atomized powder, and both alloys exhibit improved wear properties compared to pure aluminum and Al88Si12. Abrasive wear is the main mechanism for these alloys. Finally, the corrosion resistance of these alloys was studied. The results indicate that the Al84Gd6Ni7Co3 bulk material produced from the as-atomized powder has better corrosion resistance than the samples obtained from the milled powder. The main corrosion behavior for these alloys is pit corrosion, intermetallic particle etchout and the corrosion of the Al-rich inter-particle areas. These results clearly demonstrate that, by the proper selection of the sintering temperature and through the appropriate choice of the initial structural state of the powders, the combined devitrification and consolidation of amorphous precursors can be successfully used to produce bulk amorphous/nanostructured Al-based materials with tunable physical and mechanical properties. This expands the known boundaries of Al alloys and offers a new route for the development of novel and innovative high-performance Al-based materials capable to meet specific requirements.
14

Herstellung und Charakterisierung von Keramik-Matrix-Verbundwerkstoffen mit Metallpartikel- oder Metallfaserverstärkung

Franke, Peter 30 August 2017 (has links)
Die exzellenten Eigenschaften einer Keramik beziehen sich auf den hohen Schmelzpunkt, die gute Hochtemperaturfestigkeit sowie hohe Elastizitätsmodul- und Härtewerte. Weiterhin zeichnen sich die anorganisch-nichtmetallischen Werkstoffebesonders durch ihre gute Korrosions- und Verschleißbeständigkeit aus.Bedingt durch die erschwerte Versetzungsbewegung weisen keramische Werkstoffeeine höhere Sprödigkeit auf. Metallische Werkstoffedagegen sind in der Regel duktil und zeigen meist ein duktiles Bruchverhalten. Lokale Spannungsspitzen können durch plastische Verformung abgebaut werden.Das Ziel dieser Arbeit ist es, das grundsätzlich unterschiedliche Werkstofferhalten einer Keramik und eines Metalls miteinander zu kombinieren, um die Bruchzähigkeit des Keramik-Metall-Verbundwerkstoffes zu erhöhenDie fein verteilten Metalle sollen die Rissausbreitung behindern. Es können unterschiedliche Mechanismen wirken. Im Vergleich zur unverstärkten Keramik ist eine höhere Bruchenergie aufzubringen, um den Riss voran zu treiben. Die Erhöhung der Bruchenergie spiegelt sich in einer höheren Bruchzähigkeit wieder.Um eine duktile Phase in einer spröden Zirkoniumdioxidmatrix zu erzeugen, werden für die Untersuchungen unterschiedliche Metalle eingebracht. Dadurch soll die Bruchzähigkeit als Schadenstoleranz gegenüber dem Totalversagen erhöht werden. Die resultierenden Eigenschaften der Keramik-Metall-Verbundwerkstoffewerden analysiert und charakterisiert.Die Untersuchungen umfassen das pulvermetallurgische Einbringen von metallischen Pulvern mit verschiedenen Teilchengrößen sowie die chemische Einbringung von Präkursoren, die in nanokristalline Metallpartikel umgewandelt werden. Dabei kommen verschiedene Metalle mit unterschiedlichen Wechselwirkungen und Spannungen durch thermische Fehlpassungen in der Matrix zur Anwendung. Zusätzlich wird die Auswirkung der Variation der Verstärkungsform (Partikel/Faser) und des Metallgehaltes untersucht.
15

Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies

Attar, H., Bönisch, M., Calin, M., Zhang, L. C., Zhuravleva, K., Funk, A., Scudino, S., Yang, C., Eckert, J. 11 June 2020 (has links)
This study presents results of selective laser melting (SLM), powder metallurgy (PM), and casting technologies applied for producing Ti–TiB composites from Ti–TiB₂ powder. Diffraction patterns and microstructural investigations reveal that chemical reaction occurred between Ti and TiB₂ during all the three processes, leading to the formation of Ti–TiB composites. The ultimate compressive strength of SLM-processed and cast samples are 1421 and 1434 MPa, respectively, whereas the ultimate compressive strengths of PM-processed 25%, 29%, and 36% porous samples are 510, 414, and 310 MPa, respectively. The Young’s moduli of porous composite samples are 70, 45, and 23 GPa for 25%, 29%, and 36% porosity levels, respectively, and are lower than those of SLM-processed (145 GPa) and cast (142 GPa) samples. Fracture analysis of the SLM-processed and cast samples shows shear fracture and microcracks across the samples, whereas failure of porous samples occurs due to porosities and weak bonds among particles.
16

Poröses Ti-45Nb als Träger Sr-modifizierter Hydroxylapatit-Schichten

Schmidt, Romy 03 December 2018 (has links)
Ziel der Arbeit war es in einem pulvermetallurgischen Ansatz gasverdüste Ti-45Nb-Pulver mittels Heißpressen zunächst zu kompakten Formkörpern zu verpressen und über geeignete Gefügeeinstellung und bestmöglicher Partikelverzahnung maximale Druckfestigkeiten bei gleichzeitig niedrigem E-Modul zu erhalten. In einem nächsten Schritt wurden mittels Heißpressen mit Platzhalterphase definierte Porenanteile in die Formkörper eingebracht und der Einfluss dieser auf die mechanischen Eigenschaften untersucht. Die porösen Strukturen sollen als Knochenersatzmaterial in einem osteoporotischen Knochendefekt dienen. In einem solchen Defekt stellen Druckkräfte den dominierenden Belastungsfall dar. Die mechanische Charakterisierung der im Rahmen der Arbeit erzeugten porösen Formkörper erfolgte daher im Druckversuch. Die Oberfläche eines metallischen Knochenersatzmaterials muss chemisch und topografisch modifiziert werden, um damit Einfluss auf das Gleichgewicht zwischen zellbiologischen Prozessen zum Knochenauf- und -abbau an der Grenzfläche zwischen Implantat und Knochengewebe zu nehmen. Im speziellen Fall von Osteoporose, wo dieses Gleichgewicht nachweislich gestört ist, spielt die Stimulation des Knochenaufbaus eine besondere Rolle. Für Strontiumspezies konnte eine das Knochenwachstum stimulierende Wirkung und die Inhibierung des Knochenabbaus in mehreren Studien gezeigt werden. Ein weiteres Ziel der Arbeit stellte daher die Erzeugung von strontiumhaltigen Hydroxylapatitschichten mittels Elektrodeposition dar. Die erzeugten Schichten wurden strukturell, morphologisch und chemisch charakterisiert. Weiterhin wurden die Sr-Freisetzung aus den Schichten und die zellbiologische Wirkung untersucht. Konzepte zur Abscheidung auf planaren Legierungsoberflächen konnten in einem nächsten Schritt im Rahmen einer Machbarkeitsstudie auf poröse Ti-45Nb Strukturen übertragen werden. / Aim of the work was the production of dense Ti-45Nb material by hot-pressing of gas-atomized Ti-45Nb powder. Maximum compression strength and low Young’s modulus values were obtained by means of a tailored microstructure and improved interlinking of the powder particles. In a next step defined amounts of porosity were introduced by hot-pressing the alloy powder with a space holder phase. The produced porous structures should be used as bone substitute material in an osteoporotic bone defect. Compression is the dominating load in such a defect. Accordingly, compression tests were conducted to assess the mechanical properties. The surface state of metallic bone replacement materials plays an important role regarding the osseointegration of the material into the surrounding bone tissue. A chemical and topographical modification of the surface is necessary to influence the equilibrium between the formation and resorption of bone on the interphase of implant and bone tissue. Especially in case of osteoporosis the stimulation bone formation is essential. Several studies have shown that strontium species have a positive effect on the formation of bone tissue and the inhibition of bone resorption. Therefore, a further aim of the work was the electrodeposition of Sr-containing hydroxyapatite layers and the structural, morphological and chemical characterization of the deposited layers. Furthermore, the release of Sr-species from the layers and the effect on hMSC (human mesenchymal stroma cells) were examined. Originating from studies on planar alloy surfaces, the transfer of the deposition approaches was shown in a proof of concept on the porous Ti-45Nb scaffolds.
17

Strengthening of Al-based composites by microstructural modifications

Shahid, Hafiz Rub Nawaz 19 January 2019 (has links)
Die Verstärkung von Aluminium-Matrix-Verbundwerkstoffen kann durch die Integration von Hartphasenpartikeln in die Matrix erreicht werden. Die Festigkeitssteigerung der Komposite ist abhängig davon, wie die Verstärkungsphase die einwirkenden Kräfte aufnehmen kann und zudem von den Auswirkungen der Verstärkungsphase auf das Werkstoffgefüge. Die Verfestigung wird zurückgeführt auf Versetzungsmultiplikation, Matrixpartitionierung und Orowan-Verstärkungseffekte. Die Festigkeit steigt durch Erhöhung des Volumenanteils der Verstärkungsphase sowie durch die Reduktion der Größe der Verstärkungsphase. Darüber hinaus kann die Festigkeitssteigerung von Verbundwerkstoffen durch eine Gefügemodifikation verbunden mit einer Reaktion zwischen Matrix und Verstärkungsphase erreicht werden. Die Festigkeitssteigerung kann auch durch die Schaffung harmonischer Strukturen, d.h. durch ein bimodales Gefüge, erfolgen. Dieses wird erzeugt durch kontrolliertes Mahlen der partikelförmigen Precursor-Phase, die dann aus grobkörnigen Kerngebieten bestehen, eingebettet in eine kontinuierliche feinkörnige Matrix. In dieser Arbeit werden Verbundwerkstoffe auf Aluminiumbasis durch Hochenergiemahlen und anschließender Konsolidierung durch Heißpressen hergestellt. Ausgehend von der in-situ Herstellung intermetallischer Verstärkungsphasen in Al-Mg-Verbundwerkstoffen werden außerdem in-situ Gefügemodifikationen in Al-Fe3Al-Verbundwerkstoffen betrachtet. Al-Fe3Al-Verbundwerkstoffe mit harmonischer Struktur konnten dabei erfolgreich hergestellt werden. Anschließend wurde der Einfluss der mikrostrukturellen Veränderungen auf die mechanischen Eigenschaften analysiert. Al-Mg-Metallmatrix-Verbundwerkstoffe werden aus den Pulvergemischen von elementarem Aluminium und Magnesium durch druckunterstütztes reaktives Sintern hergestellt. Das Ziel ist es, den Einfluss des anfänglichen Volumenanteils von Magnesium auf die mikrostrukturellen Veränderungen und die Entstehung der in-situ intermetallischen Verstärkungsphase zu analysieren. Zudem wird der Einfluss der Reaktion zwischen Aluminium und Magnesium und die damit verbundene Bildung der intermetallischen Phasen β-Al3Mg2 und γ-Al12Mg17 auf die mechanischen Eigenschaften der Verbundwerkstoffe untersucht. Die Bildung der intermetallischen Phasen verbraucht zunehmend Aluminium und Magnesium und bewirkt eine Verfestigung der Verbundwerkstoffe: Die Streckgrenze und die Druckfestigkeit steigen mit zunehmendem Gehalt an intermetallischer Verstärkungsphase auf Kosten der plastischen Verformung. In der nächsten Phase wird im Al-Fe3Al-System die Wirksamkeit der Reaktion zwischen Matrix und Verstärkungsphase als festigkeitssteigernde Maßnahme zur weiteren Verbesserung der mechanischen Eigenschaften untersucht. Dafür werden transformierte und nicht-transformierte Verbundwerkstoffe durch Heißpressen bei unterschiedlichen Temperaturen hergestellt. Phasenanalyse und mikrostrukturelle Charakterisierung der transformierten Verbundwerkstoffe zeigten die Bildung der intermetallischen Phasen Al5Fe2 und Al13Fe4, die als Verstärkungsphase mantelförmig um die die Fe3Al-Phase angeordnet sind. Die Al-Matrix wird dabei mit steigendem Anteil an Verstärkungsphase zunehmend verbraucht. Um die durch die Al-Fe3Al-Reaktion induzierte Phasenfolge zu analysieren, wurden Verbundwerkstoffe, bestehend aus Al-Matrix und einem einzigen mm-großen Fe3Al-Partikel durch Heißpressen bei 823, 873 und 903 K synthetisiert. Die Gefüge- und Phasenanalyse deuten darauf hin, dass die In-situ-Phasenumwandlung durch atomare Diffusion von Aluminium in Fe3Al erfolgt und die Bildung von in-situ intermetallischen Phasen (Al5Fe2 und Al13Fe4) ausschließlich innerhalb der ursprünglichen Fe3Al-Partikel stattfindet. Die Phasenumwandlung beim Heißpressen führt zu einer signifikanten Festigkeitssteigerung: Die Streckgrenze und die Druckfestigkeit erhöhen sich von 70-360 MPa und 200-500 MPa für die nicht umgewandelten Verbundwerkstoffe auf 400-1800 MPa und 550-1800 MPa für die umgewandelten Materialien. Damit verbunden ist jedoch auch eine verringerte plastische Verformbarkeit in den umgewandelten Kompositen. Die Streckgrenze von transformierten und nicht transformierten Verbundwerkstoffen folgt dem Iso-Stress-Modell, wenn die charakteristischen strukturellen Merkmale (d.h. Verstärkungsphasen und Matrix) berücksichtigt werden. Schließlich wird das Konzept der harmonischen Strukturen für Metallmatrix-Verbundwerkstoffe erweitert, indem die Wirksamkeit solcher bimodaler Gefüge als Verstärkungsmethode für Verbundwerkstoffe aus einer reinen Al-Matrix verstärkt mit Fe3Al-Partikeln betrachtet wird. Ziel der Studie ist es, die Gefügeveränderungen zu untersuchen, die durch das Hochenergiemahlen der Al-Fe3Al-Verbundpulvermischungen induziert werden. Weiterhin soll der Einfluss des so veränderten Gefüges auf das mechanische Verhalten der durch Heißpressen synthetisierten Verbundproben charakterisiert werden. Die beabsichtigte Kornfeinung beschränkt sich auf die Oberfläche der Partikel, wo die Fe3Al-Phase während der Kugelmahlung der Al-Fe3Al-Verbundpulvermischungen nach und nach fragmentiert wird. In den bei der anschließenden Pulverkonsolidierung erzeugten harmonisierten Kompositen wird die feinkörnige Oberfläche zur kontinuierlichen feinkörnigen Matrix, die Makroregionen mit grobkörnigen Verstärkungspartikeln umschließt. Die Erzeugung der bimodalen Gefüge hat einen signifikanten Einfluss auf die Festigkeit der harmonischen Verbundwerkstoffe, die die des konventionellen Materials um den Faktor 2 übertrifft, ohne die plastische Verformbarkeit zu beeinträchtigen. Zudem zeigt die Modellierung der mechanischen Eigenschaften, dass die Festigkeit der harmonischen Verbundwerkstoffe genau beschrieben werden kann, indem sowohl der Volumenanteil der Verstärkungsphase als auch die charakteristischen Gefügemerkmale der harmonischen Struktur berücksichtigt werden. Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Pulvermetallurgie (d.h. Hochenergiemahlen mit anschließendem Heißpressen) erfolgreich eingesetzt werden kann, um hochfeste Verbundwerkstoffe auf Aluminiumbasis mit intermetallischer Verstärkungsphase herzustellen. Die Ergebnisse zeigen, dass durch Phasenumwandlung und durch die Anordnung von Verstärkungsphasen hervorgerufene Gefügeveränderungen die Festigkeit der Verbundwerkstoffe signifikant erhöht werden kann. Die Festigkeit und Verformbarkeit der so erzeugten Komposite hängt vom Volumenanteil und der Anordnung der Verstärkungsphase sowie der Grenzflächenreaktion zwischen den Ausgangskomponenten ab. / The strengthening of aluminum matrix composites can be achieved by incorporating hard phase particles in the matrix. The strengthening of the composites depends on the ability of the reinforcement to bear the load and on the microstructural changes induced by the reinforcement addition. The microstructural strengthening is mainly associated with dislocation multiplication, matrix partitioning and Orowan strengthening effects. The strength increases by increasing the reinforcement volume fraction as well as by reducing the size of the reinforcing particles. Additionally, strengthening of composites can be achieved by microstructural modifications through the proper reaction between matrix and reinforcement. Strengthening can also be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix. In this thesis, aluminum based composites are synthesized using ball milling followed by consolidation through hot pressing. Starting from the in-situ creation of intermetallic reinforcements in Al-Mg composites, the research proceeds towards the in-situ microstructural modification in Al-Fe3Al composites. Finally, Al-Fe3Al composites with harmonic structure are successfully produced. The consolidated composites are characterized to analyze the effect of the microstructural changes on the mechanical properties. Lightweight Al-Mg metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The aim is to analyze the effect of the initial volume percent of magnesium on the microstructural modifications and development of the in-situ intermetallic reinforcements. The effect of the reaction between aluminum and magnesium on the mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is also investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with increasing the content of intermetallic reinforcement at the expense of the plastic deformation. In the next stage, the effectiveness of the reaction between matrix and reinforcement as a strengthening method for further improving the mechanical performance composites is investigated for the Al-Fe3Al system. To achieve this aim, transformed and non-transformed composites are produced by hot pressing at different temperatures. Phase analysis and microstructural characterization of the transformed composites reveal the formation of a double-shell-reinforcement with Al5Fe2 and Al13Fe4 intermetallics surrounding the Fe3Al phase, while the Al matrix is progressively consumed with increasing the reinforcement content. In order to analyze the phase sequence induced by the Al-Fe3Al reaction, composites consisting of Al matrix and a single mm-sized Fe3Al particle were synthesized through hot pressing at 823, 873 and 903 K. The microstructural investigations and phase identifications suggest that in-situ phase transformation occurs through atomic diffusion of aluminum in Fe3Al and the formation of in-situ intermetallics (Al5Fe2 and Al13Fe4) takes place exclusively within the original Fe3Al particles. The phase transformation during hot pressing induces significant strengthening: the ranges of yield and compressive strengths increase from 70-360 MPa and 200-500 MPa for the non-transformed composites to 400-1800 MPa and 550-1800 MPa for the transformed materials. This occurs at the expense of the plastic deformation, which is generally reduced in the transformed composites. The yield strength of both transformed and non-transformed composites follows the iso-stress model when the characteristic structural features (i.e. strengthening phases and matrix) are taken into account. At the end, the concept of harmonic structures is extended to metal matrix composites by analyzing the effectiveness of such bimodal microstructures as a strengthening method for composites consisting of a pure Al matrix reinforced with Fe3Al particles. The purpose of the study is to examine the microstructural variations induced by ball milling of the Al-Fe3Al composite powder mixtures and how such variations influence the resulting microstructure and mechanical response of the bulk composite specimens synthesized by hot-pressing. Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure. The results of the current research work demonstrate that powder metallurgy (i.e. ball milling followed by hot consolidation) can be successfully used to produce high strength aluminum based composites reinforced by intermetallics. The findings indicate that phase transformation and reinforcement arrangement based microstructural modifications can significantly enhance the strength of the composites. The strength and deformability of the composites depends on the volume fraction and arrangement of the reinforcement along with the interfacial reaction between the initial components.
18

Modifizierung der Werkstoffe auf Basis von Magnesiumsilicid mit Hilfe der Spark-Plasma-Synthese / Modification of Materials based on Magnesiumsilicide using the Spark-Plasma-Synthesis

Reinfried, Nikolaus 10 April 2007 (has links) (PDF)
Die umfangreichen Untersuchungen ausgewählter Mg2Si-basierter Materialien innerhalb dieser Arbeit zeigen neue Wege für die Anwendung der SPS-Technik in der Grundlagen- als auch angewandten Forschung und liefern entscheidendes, neues Material für die Charakterisierung der Li-Verbindungen Li2xMg2-xX (X = Si, Ge, Sn, Pb). Aufbauend auf vorangegangenen Arbeiten und den hier dargestellten Resultaten ergeben sich sowohl neue Möglichkeiten der Synthese, basierend auf dem SPS-Prozess (in Verbindung mit der Pulverherstellung, ‑verarbeitung und einem entsprechenden Werkzeugdesign), als auch eine Optimierung der Materialeigenschaften von Verbundwerkstoffen durch Nutzung dieser Technik. Die ternären Phasen Mg2Si1−xXx (X = Ge, Sn, Pb) und Mg2−x/2Si1−xSbx Die pulvermetallurgische Herstellung der Phasen Mg2Si1-xXx (X = Ge, Sn und Pb) und der Phase Mg2‑x/2Si1-xSbx gelang in dieser Arbeit erstmals mit Hilfe der SPS-Technik aus kugelgemahlenen Pulvergemischen (MgH2, Si, X). Die ternären Phasen Li2xMg2−xX (X = Si, Ge, Sn, Pb) Der Einbau von Li in Mg2Si wurde in dieser Arbeit erstmalig durch die SPS-Festkörperreaktion aus LiH, MgH2 und Si untersucht. Die Synthese der Li-armen Li2xMg2−xSi-Phasen gelingt schon bei Temperaturen von max. 700 °C. Die Schmelzsynthese dieser extrem luft- und feuchtigkeitsempfindlichen Proben wurde unter Argon-Schutzgas aus den Elementen mit anschließender Wärmebehandlung bei 200 °C angewendet. Dabei lassen sich drei unterschiedliche kubische Li2xMg2−xSi-Phasen mit 0 < x < 0,8 auf der Mg2Si-reichen Seite des ternären Systems finden. Mit steigendem Li-Gehalt können röntgenographisch zwei strukturelle Umwandlungen, ausgehend von der Raumgruppe Fm-3m für Mg2Si zu P-43m und P-43m mit der Bildung einer Überstruktur mit a′ = 2a bestimmt werden. Mit steigendem Li-Gehalt in Li2xMg2−xSi ändern sich die Eigenschaften. Der Übergang vom halbleitenden zum metallischen Zustand konnte in dieser Arbeit erstmalig gezeigt werden. In Analogie zu Li2xMg2−xSi konnten die Phasen Li2xMg2−xX (X = Ge, Sn, Pb) charakterisiert werden. Eine Intercalation für Li in Mg2X ist nicht möglich. Die Verbundwerkstoffe basierend auf Mg2Si Das spröde Materialverhalten vonMg2Si-Proben kann durch einen pulvermetallurgisch erzeugten Verbundwerkstoff mit Mg reduziert werden. Die SPS-Technik Basierend auf vorangegangenen Arbeiten konnte innerhalb dieser Arbeit durch die Verwendung von MgH2 die Strom-, Dichte- und Temperaturverteilung während des SPS-Prozesses innerhalb der Probe und des Werkzeuges beurteilt werden. / Extensive investigation on selected Mg2Si based materials demonstrate new routes for the application of the SPS technique in respect to basic as well as applied research and provide decisive new material on the characterisation of the Li compounds Li2xMg2-xX (X = Si, Ge, Sn, Pb). Based on prior activities and the results shown in this work new ways of the synthesis using the SPS process (in combination with powder making and processing and suitable tool design) as well as the optimization of material properties of composite materials can be achieved using the SPS technique. The Ternary Phases Mg2Si1−xXx (X = Ge, Sn, Pb) and Mg2−x/2Si1−xSbx For the first the powder metallurgic manufacturing route of the phases Mg2Si1-xXx (X = Ge, Sn und Pb) and the phase Mg2‑x/2Si1-xSbx is shown using the SPS technique and a ball milled powder mixture (MgH2, Si, X). The Ternary Phases Li2xMg2−xX (X = Si, Ge, Sn, Pb) The intercalation of Li into Mg2Si is investigated for the first time by using the SPS solid state reaction based on LiH, MgH2 and Si. The synthesis of the Li poor phase Li2xMg2−xSi could be obtained at temperatures of max. 700 °C. The melting technique made of the elements of these extremely air and moisture sensitive samples could be performed under Argon protective atmosphere followed by a heat treatment at 200 °C. Three different cubic phases of Li2xMg2−xSi can be found on the Mg2Si rich side of the ternary System with the composition in the range of 0 < x < 0,8. With increasing Li content two structural conversions can be found using the x-ray analysis. A change from the space group Fm-3m for Mg2Si via P-43m to P-43m with a superstructure of a′ = 2a could be detected. Linked with the increasing Li content is a change of the properties. The change from the semiconducting behaviour to a metallic characteristic could be shown for the first time. Analogous to Li2xMg2−xSi the phase Li2xMg2−xX (X = Ge, Sn, Pb) could be synthesised and analysed. An intercalation of Li in to Mg2X ist not possible. Composite Materials Based on Mg2Si The brittle behaviour of Mg2Si samples can be reduced by composite material with Mg using the powder metallurgical route. The SPS-Technique Using MgH2 the distribution of the current, the density and the temperature in the sample and tool could be judged.
19

Herstellung und Eigenschaften neuartiger, metallischer Polyederzellstrukturen

Reinfried, Matthias 01 November 2010 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es, die technologischen Schritte für die Herstellung eines geschlossenzelligen metallischen Werkstoffs aus Stahl zu untersuchen. Das Eigenschaftsbild dieses neuartigen zellular aufgebauten Werkstoffs soll umfassend beschrieben und mit bereits existierenden Werkstoffkonzepten verglichen werden. Die Grundidee für die Herstellung einer geschlossenzelligen Struktur bildet die Kombination der Technologie zur Herstellung von metallischen Hohlkugeln und Hohlkugelstrukturen mit dem Herstellungsprozesses für Partikelschäume aus expandierbarem Polystyrol (EPS). Dazu ist es notwendig zunächst Grünkugeln herzustellen, wie bei der Technologie der Hohlkugeln, wobei jedoch ein treibmittelhaltiges EPS zum Einsatz kommt, das mit einer Beschichtung aus Metallpulver und Binder versehen wird. Anschließend sollen die Grünkugeln in einer geschlossenen Form zum expandieren gebracht werden. Dazu wird, wie bei der Partikelschaumtechnologie für Teile aus expandierbarem Polystyrol (EPS), Wasserdampf verwendet. Der durch den Temperaturanstieg und das Treibmittel der EPS-Partikel in den Grünkugeln entstehende Innendruck führt zum Aufschäumen und zur Expansion jeder Grünkugel. In der Folge ändert jede Kugel ihre Form so lange, bis sie mit allen Nachbarn einen flächigen, stabilen Kontakt bildet. Der auf diesem Weg erzeugte Grünkörper kann dann entformt und getrocknet werden. Wie bei der Hohlkugeltechnologie muss nachträglich das EPS durch die thermische Entbinderung entfernt und das Metallpulverskelett zu dichten Zellwänden gesintert werden. Für die Umsetzung dieser Idee ist es erforderlich, ein geeignetes Bindersystem für die Metallpulver-Binder-Beschichtung zu entwickeln, welches die Formänderung während des Schäumprozess unbeschädigt übersteht, sowie den Schäumprozess entsprechend anzupassen. Damit wäre die Möglichkeit gegeben, einen geschlossenzelligen metallischen Werkstoff herzustellen. Er würde die Vorteile einer geschlossenzelligen Struktur und die Materialvielfalt der pulvermetallurgischen Technologie der Hohlkugelherstellung (insbesondere in Bezug auf Stähle und andere höherschmelzende Werkstoffe) miteinander verbinden. In Vorversuchen wurde bereits gezeigt, dass die der Arbeit zugrunde liegenden Ideen realisierbar sind. Mit der vorliegenden Arbeit wird jedoch erstmals die vollständige Kette der technologischen Schritte hinsichtlich der relevanten Einflussgrößen untersucht, wobei großen Wert auf eine Umsetzbarkeit auch im industriellen Maßstab gelegt wird. Für den praktischen Einsatz des geschlossenzelligen Metallschaums sind seine mechanischen Kennwerte, sowie die sie beeinflussenden Herstellungsparameter von grundlegender Bedeutung. Dazu soll die Charakterisierung der zellularen Struktur und des Gefüges des Zellwandmaterials erfolgen. Hauptsächlich soll das Verformungsverhalten mit Hilfe von Druckversuchen untersucht werden. Die Festigkeitskennwerte, das Energieabsorptionsvermögen und die Steifigkeit des zellularen Werkstoffes sind weitere zu untersuchende Kenngrößen. Anhand der Ergebnisse wird eine Einordnung gegenüber dem Stand der Technik der Metallschäume vorgenommen.
20

Modifizierung der Werkstoffe auf Basis von Magnesiumsilicid mit Hilfe der Spark-Plasma-Synthese

Reinfried, Nikolaus 09 February 2007 (has links)
Die umfangreichen Untersuchungen ausgewählter Mg2Si-basierter Materialien innerhalb dieser Arbeit zeigen neue Wege für die Anwendung der SPS-Technik in der Grundlagen- als auch angewandten Forschung und liefern entscheidendes, neues Material für die Charakterisierung der Li-Verbindungen Li2xMg2-xX (X = Si, Ge, Sn, Pb). Aufbauend auf vorangegangenen Arbeiten und den hier dargestellten Resultaten ergeben sich sowohl neue Möglichkeiten der Synthese, basierend auf dem SPS-Prozess (in Verbindung mit der Pulverherstellung, ‑verarbeitung und einem entsprechenden Werkzeugdesign), als auch eine Optimierung der Materialeigenschaften von Verbundwerkstoffen durch Nutzung dieser Technik. Die ternären Phasen Mg2Si1−xXx (X = Ge, Sn, Pb) und Mg2−x/2Si1−xSbx Die pulvermetallurgische Herstellung der Phasen Mg2Si1-xXx (X = Ge, Sn und Pb) und der Phase Mg2‑x/2Si1-xSbx gelang in dieser Arbeit erstmals mit Hilfe der SPS-Technik aus kugelgemahlenen Pulvergemischen (MgH2, Si, X). Die ternären Phasen Li2xMg2−xX (X = Si, Ge, Sn, Pb) Der Einbau von Li in Mg2Si wurde in dieser Arbeit erstmalig durch die SPS-Festkörperreaktion aus LiH, MgH2 und Si untersucht. Die Synthese der Li-armen Li2xMg2−xSi-Phasen gelingt schon bei Temperaturen von max. 700 °C. Die Schmelzsynthese dieser extrem luft- und feuchtigkeitsempfindlichen Proben wurde unter Argon-Schutzgas aus den Elementen mit anschließender Wärmebehandlung bei 200 °C angewendet. Dabei lassen sich drei unterschiedliche kubische Li2xMg2−xSi-Phasen mit 0 < x < 0,8 auf der Mg2Si-reichen Seite des ternären Systems finden. Mit steigendem Li-Gehalt können röntgenographisch zwei strukturelle Umwandlungen, ausgehend von der Raumgruppe Fm-3m für Mg2Si zu P-43m und P-43m mit der Bildung einer Überstruktur mit a′ = 2a bestimmt werden. Mit steigendem Li-Gehalt in Li2xMg2−xSi ändern sich die Eigenschaften. Der Übergang vom halbleitenden zum metallischen Zustand konnte in dieser Arbeit erstmalig gezeigt werden. In Analogie zu Li2xMg2−xSi konnten die Phasen Li2xMg2−xX (X = Ge, Sn, Pb) charakterisiert werden. Eine Intercalation für Li in Mg2X ist nicht möglich. Die Verbundwerkstoffe basierend auf Mg2Si Das spröde Materialverhalten vonMg2Si-Proben kann durch einen pulvermetallurgisch erzeugten Verbundwerkstoff mit Mg reduziert werden. Die SPS-Technik Basierend auf vorangegangenen Arbeiten konnte innerhalb dieser Arbeit durch die Verwendung von MgH2 die Strom-, Dichte- und Temperaturverteilung während des SPS-Prozesses innerhalb der Probe und des Werkzeuges beurteilt werden. / Extensive investigation on selected Mg2Si based materials demonstrate new routes for the application of the SPS technique in respect to basic as well as applied research and provide decisive new material on the characterisation of the Li compounds Li2xMg2-xX (X = Si, Ge, Sn, Pb). Based on prior activities and the results shown in this work new ways of the synthesis using the SPS process (in combination with powder making and processing and suitable tool design) as well as the optimization of material properties of composite materials can be achieved using the SPS technique. The Ternary Phases Mg2Si1−xXx (X = Ge, Sn, Pb) and Mg2−x/2Si1−xSbx For the first the powder metallurgic manufacturing route of the phases Mg2Si1-xXx (X = Ge, Sn und Pb) and the phase Mg2‑x/2Si1-xSbx is shown using the SPS technique and a ball milled powder mixture (MgH2, Si, X). The Ternary Phases Li2xMg2−xX (X = Si, Ge, Sn, Pb) The intercalation of Li into Mg2Si is investigated for the first time by using the SPS solid state reaction based on LiH, MgH2 and Si. The synthesis of the Li poor phase Li2xMg2−xSi could be obtained at temperatures of max. 700 °C. The melting technique made of the elements of these extremely air and moisture sensitive samples could be performed under Argon protective atmosphere followed by a heat treatment at 200 °C. Three different cubic phases of Li2xMg2−xSi can be found on the Mg2Si rich side of the ternary System with the composition in the range of 0 < x < 0,8. With increasing Li content two structural conversions can be found using the x-ray analysis. A change from the space group Fm-3m for Mg2Si via P-43m to P-43m with a superstructure of a′ = 2a could be detected. Linked with the increasing Li content is a change of the properties. The change from the semiconducting behaviour to a metallic characteristic could be shown for the first time. Analogous to Li2xMg2−xSi the phase Li2xMg2−xX (X = Ge, Sn, Pb) could be synthesised and analysed. An intercalation of Li in to Mg2X ist not possible. Composite Materials Based on Mg2Si The brittle behaviour of Mg2Si samples can be reduced by composite material with Mg using the powder metallurgical route. The SPS-Technique Using MgH2 the distribution of the current, the density and the temperature in the sample and tool could be judged.

Page generated in 0.0816 seconds