• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 20
  • 14
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 158
  • 158
  • 67
  • 35
  • 33
  • 31
  • 29
  • 27
  • 27
  • 25
  • 24
  • 24
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Pump-probe spectroscopy of photovoltaic materials

Spencer, Ben January 2011 (has links)
The study of photovoltaic materials is important so as to develop new solar energy technologies: in particular, quantum-confined semiconductors could offer increased quantum efficiencies at a much lower manufacture cost. This thesis contains results from a number of pump-probe experiments designed to probe the carrier dynamics in bulk and quantum-confined photovoltaics. A THz time-domain spectrometer was designed, built and commissioned. The THz refractive indices and absorption coefficients of toluene and hexane were determined, and the spectrometer was benchmarked using a photoexcited GaAs wafer. Results are presented of time-resolved THz spectroscopy of photoexcited bulk InP as a function of laser excitation wavelength. These data were used to extract the quantum efficiency of bulk InP in order to compare with recent results for InP quantum dots. The quantum efficiency in quantum dots increases when the incident photon energy is at least twice the band gap energy, whereasthe efficiency of the bulk material is found to decrease. This is because of surface recombination, and these measurements therefore verify the potential superiority of quantum dot materials over bulk materials for use in solar energy applications. Initial measurements of quantum dots using THz spectroscopy highlighted the various experimental challenges involved and the upgrades required to study such samples in the future.The time-dependence of the photoinduced surface photovoltage (SPV) in Si was studied on nanosecond timescales by synchronizing an ultrafast laser system to a synchrotron radiation source (the SRS at Daresbury, UK), and measuring the resulting shift in the photoelectron spectrum. The equilibrium band bending was determined, and the decay of the SPV was attributed to the recombination of charge carriers across the band gap. Results are presented for the SPV in bulk ZnO and for PbS quantum dot chemically attached to ZnO. The fact that the PbS quantum dots were chemically attached to the surface without becoming oxidized was verified using X-ray photoelectron spectroscopy (XPS). The changes caused by photoexcitation occur on much longer timescales in ZnO than Si (sub-milliseconds rather than nanoseconds), and these timescales were conveniently accessed using the time-resolved XPS facility at the TEMPO beamline at Synchrotron SOLEIL (Paris, France). This is due to oxygen adsorption and desorption processes at the ZnO surface affectingthe transfer of charge carriers. The addition of PbS quantum dots to the ZnO surface was found to increase the speed of this charge transfer due to injection of carriers directly from the PbS quantum dot to the bulk ZnO conduction band.
62

Réalisation et caractérisation optique de microcavités en régime de couplage fort mettant à profit la structure en multi-puits quantiques auto-organisés des pérovskites en couches minces / Realization and optical characterisation of microcavities in strong coupling regime using self-assembled multi-quantum wells structure of 2D perovskites

Lanty, Gaëtan 21 November 2011 (has links)
Le travail de recherche qui est rapporté dans ce manuscrit porte sur les couches minces de pérovskites et leur utilisation dans le cadre de la problématique des microcavités en régime de couplage fort. L’arrangement cristallin des pérovskites forme une structure en multi-puits quantiques dans laquelle les états excitoniques présentent une grande force d’oscillateur et une énergie de liaison importante (quelques 100 meV), en raison des effets de confinements quantique et diélectrique. Un premier axe de ce travail a consisté à collecter des informations sur les propriétés excitoniques de ces matériaux. Sur une pérovskite particulière (PEPI), nous avons notamment effectué des mesures de photoluminescence sous excitation impulsionnelle et des mesures pompe-sonde qui semblent suggérer l’existence, sous forte densité d’excitation, d’un processus de recombinaison Auger des excitons. Un deuxième axe de recherche fut de mettre en cavité des couches de certaines pérovskites. Avec les pérovskites PEPI et PEPC, nous avons montré que la réalisation de microcavités présentant un facteur de qualité de l'ordre de la dizaine suffit à obtenir, à température ambiante, le régime de couplage fort en absorption et en émission avec des dédoublements de Rabi pouvant atteindre 220 meV. Un goulet d’étranglement dans la relaxation des polaritons a été clairement mis en évidence pour la microcavité PEPI. Nous avons d’autre part montré que les pérovskites pouvaient également être associées à des semi-conducteurs inorganiques dans des microcavités dites "hybrides". Selon Agranovich et al., ces dernières pourraient, dans le cadre de la problématique du laser à polaritons, constituer une alternative à l'augmentation du facteur de qualité des microcavités. Dans cette optique, le couple ZnO/MFMPB semble particulièrement prometteur. / The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain microcavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 meV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of microcavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 meV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in “hybrid” microcavities. According Agranovich et al., these microcavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising.
63

CARRIER TRANSPORT IN HYBRID LEAD HALIDE PEROVSKITES STUDIED BY ULTRAFAST PUMP-PROBE MICROSCOPY

Jordan M Snaider (6318551) 15 May 2019 (has links)
Insight into the nanoscale carrier transport in the rapidly developing class of solutionprocessed semiconductors known as metal halide perovskites is the focal point for these studies. Further advancement in fundamentally understanding photophysical processes associated with charge carrier transport is needed to realize the true potential of perovskites for photovoltaic applications. In this work, we study photogenerated carrier transport to understand the underlying transport behavior of the material on the 10s to 100s nanometer lengthscales. To study these processes, we employ a temporally-resolved and spatially-resolved technique, known as transient absorption microscopy, to elucidate the charge carrier dynamics and propagation associated with metal halide perovskites. This technique provides a simultaneous high temporal resolution (200 fs) and spatial resolution (50 nm) to allow for direct visualization of charge carrier migration on the nanometer length scale. There are many obstacles these carriers encounter between photogeneration and charge collection such as morphological effects (grain boundaries) and carrier interactions (scattering processes). We investigate carrier transport on the nanoscale to understand how morphological effects influence the materials transport behavior. Morphological defects such as voids and grain boundaries are inherently small and traditionally difficult to study directly. Further, because carrier cooling takes place on an ultrafast time scale (fs to ps), the combined spatial and temporal resolution is necessary for direct probing of hot (non-equilibrium) carrier transport. Here we investigate a variety of ways to enhance carrier transport lengthscales by studying how non-equilibrium carriers propagate throughout the material, as well as, carrier cooling mechanisms to extend the non-equilibrium regime. For optoelectronic devices based on polycrystalline semiconducting thin films, grain boundaries are important to consider since solution-based processing results in the formation of well-defined grains. In Chapter 3, we investigate equilibrium carrier transport in metal halide perovskite thin films that are created via the highly desired solution processing method. Carrier transport across grain boundaries is an important process in defining efficiency due to the literary discrepancies on whether the grains limit carrier transport or not. In this work, we employ transient absorption microscopy to directly measure carrier transport within and across the boundaries. By selectively imaging sub-bandgap states, our results show that lateral carrier transport is slowed down by these states at the grain boundaries. However, the long carrier lifetimes allow for efficient transport across the grain boundaries. The carrier diffusion constant is reduced by about a factor of 2 for micron-sized grain samples by the grain boundaries. For grain sizes on the order of ∼200 nm, carrier transport over multiple grains has been observed within a time window of 5 ns. These observations explain both the shortened photoluminescence lifetimes at the boundaries as well as the seemingly benign nature of the grain boundaries in carrier generation. The results of this work provide insight into why this defect tolerant material performs so well. Photovoltaic performance (power conversion efficiency) is governed by the ShockleyQueisser limit which can be overcame if hot carriers can be harvested before they thermalize. To convert sunlight to usable electricity, the photogenerated charge carriers need to migrate long distances and or live long enough to be collected. It is unclear whether these hot carriers can migrate a long enough distance for efficient collection. In Chapter 4, we report direct visualization of hot-carrier migration in methylammonium lead iodide (CH3NH3PbI3) thin films by ultrafast transient absorption microscopy. This work demonstrates three distinct transport regimes. (i) Quasiballistic transport, (ii) nonequilibrium transport, and (iii) diffusive transport. Quasiballistic transport was observed to correlate with excess kinetic energy, resulting in up to 230 nanometers of transport distance that could overcome grain boundaries. The nonequilibrium transport persisted over tens of picoseconds and ~600 nanometers before reaching the diffusive transport limit. These results suggest potential applications of hot-carrier devices based on hybrid perovskites to ultimately overcome the Shockley-Queisser limit. In the next work, we investigated a way to extend non-equilibrium carrier lifetime, which ultimately corresponds to an accelerated carrier transport. From the knowledge of the hot carrier transport work, we showed a proof of concept that the excess kinetic energy corresponds to long range carrier transport. To further develop the idea of harvesting hot carriers, one must investigate a way to make the carriers stay hot for a longer period (i.e. cool down slower). In Chapter 5, we slow down the cooling of hot carriers via a phonon bottleneck, which points toward the potential to overcome the Shockley-Queisser limit. Open questions remain on whether the high optical phonon density from the bottleneck impedes the transport of these hot carriers. We show a direct visualization of hot carrier transport in the phonon bottleneck regime in both single crystalline and polycrystalline lead halide perovskites, more specifically, a relatively new class of alkali metal doped perovskites (RbCsMAFA), which has one of the highest power conversion efficiencies. Remarkably, hot carrier diffusion is enhanced by the presence of a phonon bottleneck, the exact opposite from what is observed in conventional semiconductors such as GaAs. These results showcase the unique aspects of hot carrier transport in hybrid perovskites and suggest even larger potential for hot carrier devices than previously envisioned by the initial results presented in Chapter 4. The final chapter will be divided into two sections, as we summarize and highlight our collaborative efforts towards homogenization of carrier dynamics via doping perovskites with alkali metals and our work on two-dimensional hybrid quantum well perovskites. Further studies on the champion solar cell (RbCsMAFA) were performed to elucidate the role inorganic cations play in this material. By employing transient absorption microscopy, we show that alkali metals Rb+ and Cs+ are responsible for inducing a more homogenous halide (Iand Br- ) distribution, despite the partial incorporation into the perovskite lattice. This translates into improved electronic dynamics, including fluorescence lifetimes above 3 µs and homogenous carrier dynamics, which was visualized by ultrafast microscopy. Additionally, there is an improvement in photovoltaic device performance. We find that while Cs cations tend to distribute homogenously across the perovskite grain, Rb and K cations tend to phase segregate at precursor concentrations as low as 1%. These precipitates have a counter-productive effect on the solar cell, acting as recombination centers in the device, as argued from electron beam-induced current measurements. Remarkably, the high concentration of Rb and Cs agglomerations do not affect the open-circuit voltage, average lifetimes, and photoluminescence distribution, further indicating the perovskite’s notorious defect tolerance. A new class of high-quality two dimensional organic-inorganic hybrid perovskite quantum wells with tunable structures and band alignments was studied. By tuning the functionality of the material, the strong self-aggregation of the conjugated organic molecules can be suppressed, and 2D organic-halide perovskite superlattice crystals and thin films can be easily obtained via onestep solution-processing. We observe energy transfer and charge transfer between adjacent organic and inorganic layers, which is extremely fast and efficient (as revealed by ultrafast spectroscopy characterizations). Remarkably, these 2D hybrid perovskite superlattices are stable, due to the protection of the bulky hydrophobic organic groups. This is a huge step towards the practicality of using perovskites for optoelectronics, since stability is always a huge concern with water-sensitive materials. The molecularly engineered 2D semiconductors are on par with III-V quantum wells and are promising for next-generation electronics, optoelectronics, and photonics.
64

Illuminating the ultrafast excited state dynamics of protein-bound carotenoids in plants

Singh, Asmita January 2017 (has links)
Global energy demands have escalated over the past few decades, creating a necessity for alternative energy sources. Solar technologies inspired by the primary solar energy storing process known on earth, photosynthesis, have subsequently gained popularity. The natural photosynthetic apparatus comprises a network of membrane-bound pigment-protein complexes, with the main plant light-harvesting complex (LHCII) consisting of chlorophyll (Chl) and carotenoid (Car) pigments. Electronic excitation energy transfer (ET) of the harvested energy takes place amongst these pigments on ultrafast timescales. This energy is funnelled towards a photosynthetic reaction centre where charge separation is achieved, creating a Biobattery, which powers the subsequent manufacture of energy-rich chemical compounds for photosynthetic activity. Transient absorption pump-probe spectroscopy has proven to be a useful technique for monitoring the evolution of the excited state dynamics, such as electronic transitions and excitation ET amongst Car and Chl pigments of LHCII trimers isolated from spinach leaves. This method was utilized to probe samples excited under four different conditions: at pump excitation wavelengths (𝜆𝑒𝑥) of 489 nm (preferentially exciting Cars Lutein1 and Neoxanthin) and 506 nm (targeting Cars Lutein2 and Violaxanthin), each with an intensity of either 800 nJ/pulse (relatively high) or 500 nJ/pulse (comparatively low). A global analysis was applied to each dataset using the robust, open-source Glotaran software, from which three kinetic decay lifetimes for the various processes were extracted. General spectral observations encompassed a negative pump ground state bleach (GSB) at each 𝜆𝑒𝑥; negative Chl b and Chl a GSBs, superimposed with negative stimulated emission (SE) signals; and a positive excited state absorption (ESA) band. The first lifetime of a few picoseconds corresponded mainly to Car-S2 depopulation, resulting either from energy relaxation towards Car-S1, or ET to Chls. Small, but distinct Chl b signals of less than 3 mOD were also detected on this timescale. The second lifetime, which is between 10 and 12 ps, was characteristic to the Lutein Car-S1 lifetime, mainly depicting Car-S1 ET to Chl a. The third lifetime, which extended from ~200 ps to the nanosecond timescale, was attributed to Chl a fluorescence. The 𝜆𝑒𝑥 of 489 nm directly excites the Chl Soret region, whilst excitation at 506 nm shows a pump intensity-dependence. Laser pulse photon density values were ~1014 photons·cm-2·pulse-1 for these datasets. Singlet-singlet annihilation calculations performed on the samples excited at 506 nm provided low annihilation probabilities of 9.0% and 11.5% for a low and high pump intensity, respectively, limiting the possibility of sample photobleaching. Optimization and redevelopment of the experimental setup significantly improved both the data quality and various recorded parameters, concluding that pump-probe spectroscopy was successful on the prepared LHCII trimers. Results acquired and calculations performed correlated with literature, where minimal changes were noticed in the timescales and ET pathways. The robustness of plant systems was confirmed through both excitation-wavelength and intensity dependence. This work paves the way for advanced studies on the role Cars play in non-photochemical quenching (NPQ), a self-protection mechanism of plants against over-illumination; and for the tailoring of artificial light-harvesting antennas based on research conducted on their natural counterparts. / Globale energievereistes het oor die afgelope paar dekades toegeneem, wat die ontwikkeling van alternatiewe energiebronne noodsaaklik maak. Sontegnologieë, geïnspireer deur die primêre sonenergiebergingsproses op aarde, fotosintese, het daarom gewild geword. Die natuurlike fotosintetiese apparaat bestaan uit 'n netwerk van membraangebonde pigment-proteïenkomplekse, met die hoof ligversamelingskompleks in plante (LHCII) wat bestaan uit chlorofil- (Chl) en karotenoïed- (Car) pigmente. Die energie wat deur die pigmente geabsorbeer word, word tussen elektroniese opgewekte toestande op verskillende pigmente op ultravinnige tydskale oorgedra. Hierdie energie word na ʼn fotosintetiese reaksiesentrum gekanaliseer, waar 'n ladingskeiding geïnduseer word en 'n Biobattery sodoende geskep word. Die energie wat in dié battery gestoor is, word gebruik om energieryke chemiese verbindings te vervaardig — wat as brandstof vir die plant dien om sy lewensfunksies te verrig. Tydopgeloste-absorpsie-pomp-tasting-spektroskopie is 'n nuttige tegniek om die dinamika tussen opgewekte toestande te volg. ‘n Voorbeeld van sulke dinamika is die elektroniese opwekking en energie-oordrag tussen die Car- en Chl-pigmente van geïsoleerde LHCII-trimere in spinasieblare. Hierdie metode is gebruik om monsters onder vier verskillende toestande te ondersoek by pompgolflengtes (𝜆𝑒𝑥) van 489 nm (waar hoofsaaklik die Cars Luteïne1 en Neoksantine opgewek word) en 506 nm (vir Cars Luteïne2 en Violaksantine), en pompenergieë van ‘n relatief hoë 800 nJ/puls, of 500 nJ/puls vir elke golflengte. / Dissertation (MSc)--University of Pretoria, 2017. / National Research Foundation (NRF) / Physics / MSc / Unrestricted
65

Development of a femtosecond time-resolved spectroscopic ellipsometry setup

Herrfurth, Oliver 26 July 2019 (has links)
The developement of a femtosecond-time-resolved spectroscopic ellipsometry setup based on a pump-probe technique is described. The characterization of the setup is presented as well as first results of experiments on a c-plane oriented ZnO thin film are shown. Indications for the study of fast charge-carrier dynamics are given.:Introduction 1 1 Theoretical framework 3 1.1 Zinc oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Crystal and band structure . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Dielectric function and electronic transitions . . . . . . . . . . . . . . . . 5 1.2.1 Electronic transitions . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Dielectric function . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Charge carrier dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 High excitation effects . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Charge carrier density-dependent dielectric function model . . . . 9 1.4 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Preliminary experiments 14 2.1 Methods and instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.1 Time-integrated micro-ellipsometry . . . . . . . . . . . . . . . . . 28 2.4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Conclusive experiments at ELI Beamlines 35 3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Demonstration of functionality . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . 51 4 Results and discussion 55 4.1 Time-resolved reflectometry . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Time-resolved ellipsometry . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Summary and outlook 63
66

Time-Resolved Kelvin Probe Force Microscopy of Nanostructured Devices

Murawski, Jan 07 July 2016 (has links)
Since its inception a quarter of a century ago, Kelvin probe force microscopy (KPFM) has enabled studying contact potential differences (CPDs) on the nanometre scale. However, current KPFM investigations are limited by the bandwidth of its constituent electronic loops to the millisecond regime. To overcome this limitation, pump-probe-driven Kelvin probe force microscopy (pp-KPFM) is introduced that exploits the non-linear electric interaction between tip and sample. The time resolution surpasses the electronic bandwidth and is limited by the length of the probe pulse. In this work, probe pulse lengths as small as 4.5 ns have been realized. These probe pulses can be synchronized to any kind of pump pulses. The first system investigated with pp-KPFM is an electrically-driven organic field-effect transistor (OFET). Here, charge carrier propagation in the OFET channel upon switching the drain-source voltage is directly observed and compared to simulations based on a transmission line model. Varying the charge carrier density reveals the impeding influence of Schottky barriers on the maximum switching frequency. The second system is an optically-modulated silicon homojunction. Here, the speed of surface photovoltage (SPV) build-up is accessed and compared to timeaveraged results. Due to slow trap states, the time-averaged method is found to lack comprehensiveness. In contrast, pp-KPFM exposes two intensity-dependent recombination times on the same timescale — high-level Shockley-Read-Hall recombination in the bulk and heat-dominated recombination in the surface layer — and a delay of the SPV decay with rising frequency, which is attributed to charge carrier retention at nanocrystals. The third system is a DCV5T-Me:C60 bulk heterojunction. The SPV dynamics is probed and compared to measurements via open-circuit corrected transient charge carrier extraction by linearly increasing voltage. Both methods reveal an exponential onset of the band bending reduction that is attributed to the charge carrier diffusion time in DCV5T-Me, and a double exponential decay, hinting at different recombination paths in the studied organic solar cell. The above-mentioned experiments demonstrate that pp-KPFM surpasses conventional KPFM when it comes to extracting dynamic device parameters such as charge carrier retention and recombination times, and prove that pp-KPFM is a versatile and reliable tool for studying electrodynamics on nanosurfaces.
67

Transient carrier and lattice dynamics in photo-excited semiconductors studied by femtosecond spectroscopic ellipsometry

Herrfurth, Oliver 02 February 2022 (has links)
This work investigates transient optical properties of semiconductors and the underlying carrier and lattice dynamics after intense pulsed optical excitation. To this aim, the ex- perimental technique of pump-probe spectroscopic ellipsometry and the corresponding experimental setup is introduced first. The pump-probe scheme yields sub-picosecond temporal resolution while the spectroscopic ellipsometry measurement allows direct ex- cess to the complex-valued optical response, that means real and imaginary part of the dielectric function. The functionality of the experimental setup as well as technical de- tails, capabilities and limitations are discussed. First measurements are demonstrated on the prototypical wide-bandgap semiconductor ZnO and the classical semiconductors Ge, Si and InP. Furthermore, the full dielectric function tensor of optically anisotropic materials can be obtained from ellipsometry measurements, if suitable orientations of the material are measured and collectively analyzed. This capability will be demonstrated for the uniaxial material ZnO. Upon optical excitation, the transient occupation of electronic states is varied which leads to a redistribution of the spectral weight of absorption. This embodies the com- bined intricate effects of inter- and intra-band transitions, carrier scattering with the heated lattice as well as many-body effects such as band-gap renormalization, carrier screening and Pauli blocking. The contributions of these effects are disentangled by means of line-shape analysis of the dielectric function. For ZnO, we additionally find a strong influence of the polar electron-phonon interaction on the dielectric function that are framed as hot-phonon effects in the literature. They exemplify the importance of the lattice in the relaxation process of photo-excited semiconductors. The experimental dielectric functions will be compared to theoretical results from first-principles calcu- lation taking excitonic effects and the photo-excited carriers at elevated temperatures into account. The transient carrier dynamics are additionally supported by simula- tions of the transient carrier and lattice temperature. Moreover, spatial information on the transient carrier dynamics was obtained from pump-probe imaging ellipsometry on ZnO under similar excitation conditions. Here, the photo-excitation enables a delicate interplay between diffusion and ballistic propagation of the carriers, that leads to a non- homogeneous lateral carrier profile. This spatial modulation of the carrier density and subsequently the optical properties challenges the standard assumption of homogeneous lateral excitation in the analysis of pump-probe experiments.:Introduction 1 1 Measurement of transient optical properties 5 1.1 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Optical properties and ellipsometry . . . . . . . . . . . . . . . . . . . . . 6 1.3 Transient optical properties and time-resolved ellipsometry . . . . . . . . 7 1.4 Broadband femtosecond spectroscopic ellipsometry . . . . . . . . . . . . 10 2 Transient charge-carrier and lattice dynamics in photo-excited semicon- ductors 12 2.1 Four regimes of carrier relaxation . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Hot-phonon effects in photo-excited wide-bandgap semiconductors 16 2.2 Effects of high carrier density on optical properties . . . . . . . . . . . . 17 2.3 Transient dielectric functions of ZnO . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Ultrafast dynamics of hot charge carriers in an oxide semiconduc- tor probed by femtosecond spectroscopic ellipsometry . . . . . . . 21 2.3.2 Transient birefringence and dichroism in ZnO studied with fs-time- resolved spectroscopic ellipsometry . . . . . . . . . . . . . . . . . 22 2.3.3 Femtosecond-time-resolved imaging of the dielectric function of ZnO in the visible to near-IR spectral range . . . . . . . . . . . . 23 2.4 Transient dielectric functions of Ge, Si and InP . . . . . . . . . . . . . . 24 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Summary and outlook 29 Bibliography 32 Cumulated Publications 52 Symbols and abbreviations 54 Danksagung 56 Zusammenfassung nach §11 (4) der Promotionsordnung 58 / In dieser Arbeit werden die transienten optischen Eigenschaften von Halbleitern nach gepulster optischer Anregung und die zugrundeliegende Prozesse der Ladungsträgerund Kristallgitterdynamik untersucht. Zu diesem Zwecke wird die experimentelle Methode der femtosekunden-zeitaufgelösten spektroskopische Ellipsometrie eingeführt. Das Pump-Probe-Messschema gewährt eine zeitliche Aufösung von weniger als einer Pikosekunde während es die spektroskopischen Ellipsometrie ermöglicht, direkten Zugang zur komplex-wertigen optischen Antwortfunktion auf eine eintreffende elektromagnetische Welle das heißt Real- und Imaginärteil der dielektrischen Funktion (DF) in einem breiten Spektralbereich zu erhalten. Zu Beginn wird der Messaufbau der zeitaufgelösten spektroskopischen Ellipsometrie vorgestellt. Seine Funktionalität wird durch Untersuchungen am prototypischen weitbandlückigen Halbleiter ZnO und den klassischen Halbleitern Ge, Si und InP demonstriert. Weiterhin können richtungsund polarisationsabhängige optischen Eigenschaften bestimmt werden, wenn entsprechende Orientierungen der Probe gemessen und simultan modelliert werden. Diese Fähigkeit wird ebenfalls an ZnO demonstriert, da es aufgrund seiner hexagonalen Kristallstruktur anisotrope optische Eigenschaften aufweist. Die intensive optische Anregung der Halbleiter bewirkt eine zeitweilige Umverteilung der Besetzung der elektronischen Zustände, welche sich in einer deutlich veränderten Linienform der DF widerspiegelt. Verantwortlich dafür sind unter anderem elektronische Interund Intra-Band-Übergänge und Streuprozesse mit dem aufgeheizten Gitter sowie verschiedene Vielteilcheneffekte wie Bandlückrenormierung, Abschirmung der Ladungsträger und das Pauli-Prinzip. Die Beiträge dieser Effekte können mittels geeigneter Linienformanalyse der DF näher untersucht werden. Am Beispiel von ZnO wird auch die starke Wechselwirkung der Elektronen mit dem aufgeheizten Gitter und deren Auswirkungen auf die DF gezeigt. Die experimentelle DF wird mit theoretischen Berechnungen verglichen, wobei bei exzitonische Effekte und die hohe Überschussenergie der Ladungsträger berücksichtigt werden. Zusätzlich erklären Simulationen der transienten Ladungsträgerund Gittertemperatur den Verlauf der Relaxation der Ladungsträger. Weiterhin werden Information über die räumliche Ausbreitung der Ladungsträger nach optischer Anregung mittels abbildender zeitaufgelöster Ellipsometrie an ZnO gewonnen. Hierbei wird ein komplexes Zwischenspiel zwischen Diffusion und ballistischer Propagation der Ladungsträger beobachtet, welches zu einer ringförmigen Verteilung der Ladungsträger führt.:Introduction 1 1 Measurement of transient optical properties 5 1.1 Light polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Optical properties and ellipsometry . . . . . . . . . . . . . . . . . . . . . 6 1.3 Transient optical properties and time-resolved ellipsometry . . . . . . . . 7 1.4 Broadband femtosecond spectroscopic ellipsometry . . . . . . . . . . . . 10 2 Transient charge-carrier and lattice dynamics in photo-excited semicon- ductors 12 2.1 Four regimes of carrier relaxation . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Hot-phonon effects in photo-excited wide-bandgap semiconductors 16 2.2 Effects of high carrier density on optical properties . . . . . . . . . . . . 17 2.3 Transient dielectric functions of ZnO . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Ultrafast dynamics of hot charge carriers in an oxide semiconduc- tor probed by femtosecond spectroscopic ellipsometry . . . . . . . 21 2.3.2 Transient birefringence and dichroism in ZnO studied with fs-time- resolved spectroscopic ellipsometry . . . . . . . . . . . . . . . . . 22 2.3.3 Femtosecond-time-resolved imaging of the dielectric function of ZnO in the visible to near-IR spectral range . . . . . . . . . . . . 23 2.4 Transient dielectric functions of Ge, Si and InP . . . . . . . . . . . . . . 24 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Summary and outlook 29 Bibliography 32 Cumulated Publications 52 Symbols and abbreviations 54 Danksagung 56 Zusammenfassung nach §11 (4) der Promotionsordnung 58
68

PRELIMINARY OBSERVATION OF VIBRATIONAL RESONANCES ANDPROPAGATION MODES IN COLD ATOM DISSIPATIVE 3D OPTICAL LATTICES

Dharmasiri, Ajithamithra 12 August 2019 (has links)
No description available.
69

Studies on optical spectroscopy techniques with surface plasmon resonance / 表面プラズモン共鳴を用いた光学スペクトロスコピー技術に関する研究 / ヒョウメン プラズモン キョウメイ オ モチイタ コウガク スペクトロスコピー ギジュツ ニカンスル ケンキュウ

市橋 隼人, Hayato Ichihashi 22 March 2020 (has links)
表面プラズモン共鳴型超音波センサは高分解能な光音響顕微鏡用超音波受波器として期待されている.本研究では,サブナノ秒パルスレーザを利用したポンププローブシステムを構築してサブナノ秒域における表面プラズモン共鳴センサの熱・弾性的な過渡応答を光学的に評価した。特にプローブ光の反射率変化として観測される過渡応答の発生メカニズムについて,実験と理論の両方のアプローチから検討しており,観測される過渡応答は金属薄膜のプラズマ周波数の変化に起因することを明らかにした。 / Surface plasmon resonance (SPR) sensor has been expected as a ultrasonic sensor used in high resolution photoacoustic microscopy (PAM). In this thesis, thermoelastic transient responses in SPR sensor were evaluated by a pump probe system with a developed sub-nanosecond pulsed laser. Especially, the mechanism of the transient response to be observed as a reflectivity change of the probe light was studied by two approaches of the experiment and the theoretical estimation. As consequence of these approaches, it was revealed that the transient response was caused by the change of the plasma frequency in a thin metal film of SPR sensor. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
70

Early Events in Photochemistry of Aryl Azides Used as Photoaffinity Labeling Agents

Panov, Maxim S. 22 November 2011 (has links)
No description available.

Page generated in 0.0693 seconds