• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 566
  • 322
  • 109
  • 82
  • 78
  • 49
  • 37
  • 22
  • 18
  • 18
  • 15
  • 8
  • 7
  • 6
  • 4
  • Tagged with
  • 1545
  • 503
  • 306
  • 278
  • 274
  • 173
  • 169
  • 159
  • 156
  • 152
  • 111
  • 109
  • 101
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Characteristics of reversible-pump turbines

Olimstad, Grunde January 2012 (has links)
The primary goal for this PhD project has been to investigate instability of reversiblepump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterways and limited rotating inertia. It is only observed for certain operation points at either high speed or low load. These correspond to either high values of Ned or low values of Qed. The work done in this PhD thesis can be divided into the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in a power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable characteristics. Three-dimensional analyses were performed and showed multiple complex flow structures in the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runner’s geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods used were measurements, CFD modelling and analytical models. The leading edge profile was altered on the physical model and measurements were performed in the laboratory. Results showed that the profiles have significant influence on characteristics and therewith stability at high speed operation points. Other design parameters were investigated by CFD analysis with special focus on the inlet blade angle.
72

Simulation of force output of piezo-micro-pump

Lin, Nan-kai 02 September 2007 (has links)
Among the MEMS field, the design and simulation of piezoelectric micro-actuators are difficult as compared to thermal micro-actuators and electrostatic micro-actuators. The main reason of the piezo-electric material coupling effect is difficult to calculate. However the piezo-electric material has several advantages and characteristics for designing micro-actuators. Moreover, the design is usually done by the experimental or try-and-error method which is not so effective. It should be noted that there is not a simple method already developed for the design and simulation of the piezo-electric micro-actuators. In this research we proposed to use the software of ANSYS for the simulation of piezo-electric micro-pump. Simulation of force output of piezo-micro-pump can use ANSYS software to establish the simulation system of piezo-micro-pump. The micro-pump will have different resonance frequency, back-pressure and fluid due to piezo-electric characteristic. In this study, the author used a square, rectangle and circle geometric shape to simulate the result, each geometric shape has four different kinds of size. As a result, there are twelve groups of different simulation results. We are able to using the chart to present and explain the relation between resonance frequency and displacement.
73

Investigation in modeling a load-sensing pump using dynamic neural unit based dynamic neural networks

Li, Yuwei 15 January 2007
Because of the highly complex structure of the load-sensing pump, its compensators and controlling elements, simulation of load-sensing pump system pose many challenges to researchers. One way to overcome some of the difficulties with creating complex computer model is the use of black box approach to create an approximation of the system behaviour by analyzing input/output relationships. That means the details of the physical phenomena are not so much of concern in the black box approach. Neural network can be used to implement the black box concept for system identification and it is proven that the neural network have the ability to model very complex behaviour and there is a well defined set of neural and neural network structures. Previous studies have shown the problems and limitations in dynamic system modeling using static neuron based neural networks. Some new neuron structures, Dynamic Neural Units (DNUs), have been developed which open a new area to the research associated with the system modelling.<p>The overall objective of this research was to investigate the feasibility of using a dynamic neural unit (DNU) based dynamic neural network (DNN) in modeling a hydraulic component (specifically a load-sensing pump), and the model could be used in a simulation with any other required component model to aid in hydraulic system design. To be truly representative of the component, the neural network model must be valid for both the steady state and the transient response. Due to three components (compensator, pump and control valve) in a load sensing pump system, there were three different pump model structures (the pump, compensator and valve model, the compensator and pump model, and the pump only model) from the practical point of view, and they were analysed thoroughly in this study. In this study, the DNU based DNN was used to model a pump only model which was a portion of a complete load sensing pump. After the trained DNN was tested with a wide variety of system inputs and due to the steady state error illustrated by the trained DNN, compensation equation approach and DNN and SNN combination approach were then adopted to overcome the steady state deviation. <p>It was verified, through this work, that the DNU based DNN can capture the dynamics of a nonlinear system, and the DNN and SNN combination can eliminate the steady state error which was generated by the trained DNN. <p>The first major contribution of this research was in investigating the feasibility of using the DNN to model a nonlinear system and eliminating the error accumulation problem encountered in the previous work. The second major contribution is exploring the combination of DNN and SNN to make the neural network model valid for both steady state and the transient response.
74

Utredning av värmepump med fjärrvärmespets

Hedlund, Sandra January 2012 (has links)
Det här är ett examensarbete som handlar om en fastighet som står på Norra Kungsgatan 37-43 som har både en värmepump och fjärrvärme för uppvärmning. Värmepumpen används i första hand och fjärrvärmen används som spets när värmepumpen inte räcker till. Detta är en ganska ovanlig kombination. Syftet med arbetet är att ta reda på om detta är en bra lösning och om lösningen är lönsam. För att få fram hur stort fastighetens energibehov är så görs beräkningar utifrån fjärrvärmedata från tidigare år samt en gammal värmepump som är utbytt sedan 2011. Byggnadens energibehov uppskattas vara ungefär 895 MWh/år och värmepumpen beräknas täcka 54 % av värmebehovet. Utifrån detta jämförs sedan kostnaden för uppvärmning av fastigheten med endast fjärrvärme med kostnaden för uppvärmning med både värmepumpen och fjärrvärme. Genom att använda värmepumpen så sparas drygt 140 000 kr per år. Det innebär att värmepumpen är lönsam rent ekonomiskt. Däremot kan användningen av högkvalitativ energi för uppvärmning diskuteras. Värme som är energi med lägre kvalitet borde i första hand användas för uppvärmning. Det för att inte slösa på våra dyrbara energiresurser och på så sätt få en hållbar utveckling. / This is an essay about a property at Norra Kungsgatan 37-43 who is heated with both a heat pump and district heating. The heat pump is used primarily and district heating is used as a tip when the heat from the heat pump is not enough. This is a pretty rare combination. The purpose of this essay is to find out if this is a good solution and if the solution is economically viable. To determine the heat demand of the property, calculations based on district heating data and heat pump data from previously years has been used. The heat demand of the building is estimated to be approximately 895 MWh/year and the heat pump is estimated to cover 54% of the heat demand. Based on this, the cost for heating the building with district heating is compared with the cost of heating the building with the heat pump and district heating. By using the heat pump, more than 140 000 kronor per year can be saved. This means that the heat pump is economically viable. However, the use of high-quality energy for heating is discussed. Heat is energy with lower quality and should be used primarily for heating. We can not waste our precious energy resources if we want to achieve sustainable development.
75

Investigation in modeling a load-sensing pump using dynamic neural unit based dynamic neural networks

Li, Yuwei 15 January 2007 (has links)
Because of the highly complex structure of the load-sensing pump, its compensators and controlling elements, simulation of load-sensing pump system pose many challenges to researchers. One way to overcome some of the difficulties with creating complex computer model is the use of black box approach to create an approximation of the system behaviour by analyzing input/output relationships. That means the details of the physical phenomena are not so much of concern in the black box approach. Neural network can be used to implement the black box concept for system identification and it is proven that the neural network have the ability to model very complex behaviour and there is a well defined set of neural and neural network structures. Previous studies have shown the problems and limitations in dynamic system modeling using static neuron based neural networks. Some new neuron structures, Dynamic Neural Units (DNUs), have been developed which open a new area to the research associated with the system modelling.<p>The overall objective of this research was to investigate the feasibility of using a dynamic neural unit (DNU) based dynamic neural network (DNN) in modeling a hydraulic component (specifically a load-sensing pump), and the model could be used in a simulation with any other required component model to aid in hydraulic system design. To be truly representative of the component, the neural network model must be valid for both the steady state and the transient response. Due to three components (compensator, pump and control valve) in a load sensing pump system, there were three different pump model structures (the pump, compensator and valve model, the compensator and pump model, and the pump only model) from the practical point of view, and they were analysed thoroughly in this study. In this study, the DNU based DNN was used to model a pump only model which was a portion of a complete load sensing pump. After the trained DNN was tested with a wide variety of system inputs and due to the steady state error illustrated by the trained DNN, compensation equation approach and DNN and SNN combination approach were then adopted to overcome the steady state deviation. <p>It was verified, through this work, that the DNU based DNN can capture the dynamics of a nonlinear system, and the DNN and SNN combination can eliminate the steady state error which was generated by the trained DNN. <p>The first major contribution of this research was in investigating the feasibility of using the DNN to model a nonlinear system and eliminating the error accumulation problem encountered in the previous work. The second major contribution is exploring the combination of DNN and SNN to make the neural network model valid for both steady state and the transient response.
76

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling

Oluwadairo, Tolulope 15 May 2009 (has links)
Dual Gradient Drilling is an exciting technology which promises to solve the current technical hurdles and economic risks of Deepwater Drilling. Several techniques for Dual Gradient Drilling have been proposed to the industry. One such method involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection of wellbore influxes. Any such pump chosen to achieve this objective will be subjected to very high differential pressures and will be faced with the onerous task of lifting very abrasive and viscous mud slurries from the sea floor back to the drilling rig. This distance in deep water may be well within the range of about 4, 000 – 12,000 feet depending on the operating water depth of the rig. Several pump technologies available to the industry were examined. Piston pumps are very efficient and can withstand the high differential pressures encountered in the Mudlift Drilling System. However, their drawbacks are their large size and weight and high initial capital cost and maintenance costs. Centrifugal pumps on the other hand are relatively smaller than piston and diaphragm pumps and are generally less expensive. Disc pumps, with their non-impingement design are able to handle solids and fluids with a high gas volume fraction but, like centrifugal pumps, are generally less efficient than reciprocating pumps. Diaphragm pumps are capable of maintaining a constant rate regardless of pressure fluctuations. They can handle very abrasive solids with limited wear on the pump. They also excel at handling very viscous fluids and they can be modified to handle up to 95% gas volume fraction. Like piston pumps, they have very high efficiencies. The potential of each of these pump technologies to meet the requirements for the Mudlift Drilling System was examined in this thesis. The benefits and drawbacks of each of these pump technologies were highlighted and modifications to meet the demands of the mudlift system evaluated.
77

The Spectral Characteristics of Fiber Grating Stabilized 980nm Pump Lasers

Lin, Hsueh-hui 28 June 2004 (has links)
The spectral characteristics of fiber grating-stabilized 980nm pump lasers were studied theoretically and experimentally. A new process of fiber tip flattening making quadrangular-pyramid-shaped fiber lens (QPSFL) was successfully developed. This fiber tip flattening process can improve the yield fabricating QPSEL up to 20% compared with the previous research of the process without tip flattening. The QPSFL was used in coupling between the high-power 980nm laser diodes and the single mode fibers (SMFs). A fiber grating was fused at the end of the single mode fiber. The reflectivity of fiber gratings were 6%, 8% and 10%, and the length of the external cavity was about 2.5m. The measured result showed that the stability of temperature to peak wavelength and driving current to peak wavelength were improved 60 and 30 times, respectively. A theoretical modeling which combined the laser rate equation and the grating theory was successfully developed as well. The qualitative analysis of the numerical simulation showed that the peak wavelength would be locked in the reflection spectrum of the fiber grating. On the other hand, we have also finished packaging a butterfly 980nm pump laser module by the laser welding technology.
78

An Analysis on the Blade Design Parameters of Turbo Molecular Pumps

Tsai, Hong-Zhi 27 July 2000 (has links)
Turbo Molecular pumps, abbreviated as TMP, can create a high vacuum environment for some special industries, especially the semiconductor and IC industries. The turbo blade design is one of the main technologies that affect the performance of a TMP. The object of this study is to investigate what kind of blade design parameters, e.g. blade angle, blade spacing, blade chord, blade velocity, etc., will affect the performance of TMP. It is hope that an analysis methodology of these parameters can be setup in the viewpoint of pumping rate curve. The results of this study will be useful for the design of TMP.
79

The Effects of the Back Clearance Size and the Balance Holes on the Back Clearance Flow of the Centrifugal Pump with Semi-Open Impeller

Park, Sang 16 January 2010 (has links)
Conventionally the size of the back clearance played a great importance on reducing the axial clearance by utilizing the concept that the decreased axial clearance results in lower axial force acting on the impeller. However, from the previous works on the effect of the back clearance on the hydrodynamic forces upon the semi-open impeller showed the opposite trend: increasing the back clearance results in the reduced axial loading. In this work, the CFD simulation of an entire pump and detailed analysis on the back clearance flow are performed. By utilizing the commercially available software, meshing and CFD simulations are performed. LDA data, unsteady pressure data, and pressure distributions on the housing are used to validate the CFD model. The flow field prediction of the back clearance flow is then compared with other researcher’s works of the gap flow analysis between the rotating and stationary disks. The flow field inside the impeller passage, which is very sensitive to the back clearance size, is also studied. The empirical equation for the leakage loss through the balance holes is produced using the CFD predictions.
80

Simulation of a vertical ground-coupled heat pump system with optimal ground loop design

Adivi, Krishna C. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains ix, 92 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 72-75).

Page generated in 0.0479 seconds