• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 367
  • 103
  • 39
  • 26
  • 16
  • 13
  • 9
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 675
  • 276
  • 247
  • 239
  • 132
  • 128
  • 119
  • 115
  • 88
  • 72
  • 71
  • 69
  • 68
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Redesign for energy and reserve markets in electric power networks with high solar penetration

Hollis, Preston Taylor 07 September 2011 (has links)
Favorable price trends and increasing demand for renewable energy sources portend accelerating integration of solar photovoltaic (PV) generation into traditional electric power system networks. Managing the variable output of massive PV resources makes system frequency regulation more complex and expensive. ISOs must procure additional regulation and load following capacity, while power plants must supply more regulation work. In contrast to costly physical storage solutions, this thesis proposes to address the issue by reconfiguring the electricity market pricing structure to translate all power imbalances into real-time market price signals. More accurately determining the instantaneous value of energy, electric power markets could reward participants who can quickly respond to frequency fluctuations. By utilizing short term forward markets to monetize the risk associated with intermittency, the true cost of reliability is determined and could reduce wasteful capacity payments. This market redesign is an ideal open platform for disparate smart grid technologies which could encourage all suppliers, loads and generator, to offer supply or reduce consumption when it is needed most and could vastly improve frequency performance metrics.
242

Photovoltaic System Layout for Optimized Self-Consumption

Luthander, Rasmus January 2013 (has links)
Most of the photovoltaic (solar cell) systems in Sweden today are installed on private houses and connected to the public grid. Photovoltaic (PV) power can be consumed directly in the house, called self-consumption, or fed in to the public grid. For the house owner self-consumed PV energy often has a higher economic value than sold excess PV energy, since the savings from not buying one kWh is larger than the income of selling one kWh. The self-consumption can be expressed as an absolute value; amount of produced/consumed kWh, or as a relative; absolute self-consumption divided with total PV production. The PV production and self-consumption were calculated on an hourly basis. In this Master thesis a MATLAB tool for calculating and optimizing the production, absolute and relative self-consumption and profit for PV systems with panels in one (1DPV), two or three directions (3DPV) was developed. The results show possibilities to increase especially the relative self-consumption with 3DPV. There is however no economic gain of using 3DPV instead of south-directed 1DPV for the studied case; a private house close to Västerås with a 1DPV system of 3360 W and variable electricity prices based on hourly Nord Pool Spot prices. The rated power of the inverter can be decreased with 3DPV compared to south-oriented 1DPV and still keep minimal production losses. A smaller inverter and other peripheral equipment such as cables might compensate for the lower yearly profit with 3DPV when calculating the payback period. Further studies of economic aspects and how to optimize them have to be carried out for 3DPV systems, since economy is very crucial for investment decisions.
243

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System

Badri, Seyed Ali Mohammad January 2013 (has links)
This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar energy is used for space heating, and DHW production using PV modules which supply direct current directly to electrical heating elements inside a water storage tank. On the other hand a GSHP system as another source of renewable energy provides heat in the water storage tank of the system in order to provide DHW and space heating. These two sources of renewable energy have been combined in this case-study in order to obtain a more efficient system, which will reduce the amount of electricity consumed by the GSHP system.The key aim of this study is to make simulations, and calculations of the amount ofelectrical energy that can be expected to be produced by a certain amount of PV modules that are already assembled on a house in Vantaa, southern Finland. This energy is then intended to be used as a complement to produce hot water in the heating system of the house beside the original GSHP system. Thus the amount of electrical energy purchased from the grid should be reduced and the compressor in the GSHP would need fewer starts which would reduce the heating cost of the GSHP system for space heating and providing hot water.The produced energy by the PV arrays in three different circuits will be charged directly to three electrical heating elements in the water storage tank of the existing system to satisfy the demand of the heating elements. The excess energy can be used to heat the water in the water storage tank to some extent which leads to a reduction of electricity consumption by the different components of the GSHP system.To increase the efficiency of the existing hybrid system, optimization of different PV configurations have been accomplished, and the results are compared. Optimization of the arrays in southern and western walls shows a DC power increase of 298 kWh/year compared with the existing PV configurations. Comparing the results from the optimization of the arrays on the western roof if the intention is to feed AC power to the components of the GSHP system shows a yearly AC power production of 1,646 kWh.This is with the consideration of no overproduction by the PV modules during the summer months. This means the optimized PV systems will be able to cover a larger part of summer demand compared with the existing system.
244

How to supply bus stops with electricity without connecting them to the electricity grid

Axelsson, Karin, Ekblom, Tove, Olsson, Anna January 2013 (has links)
This Bachelor’s degree thesis has been performed on behalf of Upplands Lokaltrafik. The thesis aims to suggest a design of a stand-alone renewable power supply system for the bus stops in Uppland. Because of reorganization of Upplands Lokaltrafik and a change in the electricity act they now have to make the decision of either having the future bus stops connected to the electricity grid, with the requirement of installing an electricity meter at each bus stop, or to implement an off grid solution. Upplands Lokaltrafik has a goal of doubling the number of passengers until 2020 and as a part of reaching this goal the bus stops will be designed with electrical features. This thesis also aims to investigate the electricity demand for these future bus stops. The result of the study shows that a connection to the electricity grid and installation of an electricity meter means an investment cost of approximately 83 500 SEK or 123 500 SEK depending on how far cables have to be drawn. The solution with a photovoltaic system with a 180 Wp solar panel would result in an installation cost of 18 500 SEK, which would be both cheaper and more sustainable for the future. However, a photovoltaic system means higher maintenance and a higher risk of destruction. Depending on choice of batteries and the slope of solar panels, both maintenance and risk of vandalization could be diminished.
245

LASER-TESTING RIG : Measurement System for evaluation of Shape of concentrating reflector for solar collector Absolicon X10

Gaynullin, Bakhram January 2009 (has links)
This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.
246

To conserve or consume : behavior change in residential solar PV owners / Behavior change in residential solar PV owners

McAndrews, Kristine Lee 17 February 2012 (has links)
A survey of residential solar photovoltaic (PV) adopters in Texas was administered and the results are presented and discussed. A 40% response rate was achieved and 365 complete responses were received. In addition to demographics, the survey uncovered aspects related to the decision-making process, information search, financial attractiveness of PV, and post-installation experience. Peer-effects did not have a large influence on the adoption of residential PV in Texas, but the potential for increasing the number of communication/information channels to increase the adoption rate of PV exists. Adopters experienced little uncertainty at the time of PV installation because sufficient dependable information was available during the search process. Overall, they are satisfied with PV. Contextual factors, such as income and the ability to purchase a PV system rather than lease one, influence behavior. Those who decreased electricity consumption post-adoption were more motivated to adopt by environmental concern and a general interest in energy than those who increased electricity consumption post-adoption. Those who experienced behavior changes also experienced an increase in awareness of electricity use post-adoption, while those who did not experience a behavior change reported no change in awareness post-adoption. Change in awareness of electricity use is less dependent on the attitudinal and contextual factors, such as environmental concern, motivation for adoption, age, and income, that influence consumption change. The potential for further analysis of the survey results is great and will likely yield additional conclusions about the consequences of the adoption of PV. Coupling the survey results with historical electricity bill data will yield stronger conclusions about behavior change. Surveying geographical areas outside of Texas is recommended. / text
247

Single phase grid tie inverter for solar PV panels with active power decoupling circuit

Ramasubramanian, Karthik 13 August 2012 (has links)
Distributed energy resources like solar power (PV Panels) are usually connected to the AC grid through a single phase voltage source inverter (VSI). The major drawback associated with single phase grid tie inverters is the double frequency component of the grid that appears on the DC bus link. Large electrolytic capacitors are generally employed in the inverters to eliminate the ripple component. However, their bulkiness and relatively short lifetime are motivational factors to replace them with small film capacitors. This paper presents a synchronous boost/buck based active power decoupling circuit in parallel with the dc-bus link capacitor and discusses the different types of control strategies implemented. Simulation results are presented for each control technique and it is shown that the ripple on the DC bus link is largely reduced due to inclusion of this circuit along with an expected extension of the lifetime due to the reduction in the amount of dc-bus capacitance used. / text
248

Creating more effective functional materials: altering the electronics of conducting metallopolymers for different applications.

Raiford, Matthew Thomas 26 August 2015 (has links)
Conducting metallopolymers possess attractive electronic properties for use in sensors, photoelectronic devices, catalysts, and other applications. Modification of the conducting polymer backbone, through chemical or electrochemical methods, enables control of catalytic, electronic, and optical properties of the metal via inductive modulation of the electron density. Understanding in detail the relationship between the metal and polymer backbone could lead to more effective metallopolymer materials. We hope to study this relationship by probing the band gaps, excited state energy levels, catalytic activity, and sensor function in four metallopolymer systems. Devices with sub-stochiometric ratios of Cu2ZnSnS4 NPs (CZTS: (Cu2Sn)1-xZn1/xS)(0≥x≥0.75)) grown in Cu(II) conducting metallopolymers were produced to study band gap tuning in hybrid materials. The valence and conductance bands of CZTS (x = 0.60) aligned with the HOMO/LUMO of the Cu(II) metallopolymer. Changing the alignment facilitated charge transfer in the hybrid material, leading to photovoltaic materials with efficiencies of ~0.1%. Chemoresistive ionophore sensors were developed by incorporating selective binding groups, such as thiourea, into conducting polymer backbones. Thiourea monomers and polymers showed high selectivity for Pb(II) ions over many competitive ions. XPS experiments demonstrated that reversible chelation of Pb(II) ions could be achieved through a simple uptake/rinse process. The conductivity of the thiourea polymer increased fifty-fold, from 7.75×10−2 S/cm2 to 3.5 S/cm2, after Pb(II) exposure. Sensitivity measurements indicated the sensors have limits of detection near 10−10 M. Highly conjugated ligands were synthesized to explore effective sensitization of visible and near-IR emitting lanthanides. (3,4-ethylenedioxy)thiophene was appended to dipyridophenazine and dipyridoquinoxaline to introduce a group that could be easily electropolymerized. These bi-functional ligands emitted from π-π* and an inter-ligand charge transfer excited states, and therefore, two distinct triplet states were observed. These separate energy pathways allowed for efficient sensitization of both visible (Tb(III), Eu(III), Dy(III)) and near-IR emitting (Nd(III), Yb(III), Er(III)) ions. Finally, we explored the oxidation of a rhodium-containing conducting metallopolymer and the subsequent effect on the activity of the metal center. Oxidation of the backbone led to ancillary ligand attenuation, allowing for control of the catalytically active species in the conducting metallopolymer. Rh(I,III) monomer and metallopolymer catalytic studies showed potential for new heterogenous/homogeneous hybrid catalysts. / text
249

Solar PV Powered Air Conditioner Analysis for an Office/Classroom in a Tropical Climate

Howley, Brian, Fleischer, Marc January 2015 (has links)
This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.
250

Modeling adoption of solar photovoltaics and analysis of net metering in the city of Austin

Josyula, Siva Kiran 30 September 2011 (has links)
Solar photovoltaics have received government support in the form of rebates, tax credits and net metering tariff mechanisms. The intended goal of these incentives is to encourage innovation in the manufacturing and installation of these systems, which is expected to eventually help overcome the high cost barrier for the adoption of the technology. These systems have the advantages of abundant availability of the solar resource, low environmental footprint, and the possibility of onsite installation, reducing the need for additional generation and transmission capacity. Since millions of dollars have been invested in these incentive programs, there is an interest in tracking the progress in the cost and capacity installed. In the first part of this thesis, I analyzed the trends in costs and adoption of solar PV by residential and commercial customers in the city of Austin. This is accomplished by tabular and graphical analysis of data on PV installations from 2004, when Austin Energy’s rebate program started, to early 2010. In the second part of the thesis, I used technology diffusion models to analyze and forecast the diffusion of residential PV systems in Austin. Three types of models were used to model the adoption trends: Logistic growth model, Bass model without price effects and Bass model including price effects. In the final part of the thesis, I analyzed the net metering tariff mechanism in Austin and studied the difference between the current and an alternative tariff. The alternative tariff uses actual ‘grid usage’ to calculate the energy charge (cost of providing distribution service) instead of the ‘net energy consumed’ that is currently in use. Using simulated PV generation data and ERCOT load profile data, I calculated the difference in revenue for Austin Energy with the alternative tariff. The results indicate that the alternative tariff adds little revenue to Austin Energy’s energy charge revenues at the current level of penetration of solar PV. However, at a higher penetration level of PV, the alternative tariffs might result in significant additional revenue for the utility. The thesis concludes with a discussion on the possible rationale for the alternative tariff and directions for future research. / text

Page generated in 0.0239 seconds