• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 32
  • 22
  • 5
  • Tagged with
  • 140
  • 66
  • 53
  • 45
  • 41
  • 24
  • 20
  • 20
  • 20
  • 19
  • 16
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation / Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication

Heindel, Tobias January 2013 (has links) (PDF)
Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. / Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems.
32

Festkörperbasierte Einzelphotonenquellen als Grundbausteine der Quanteninformationstechnologie / Solid-state single photon sources as building blocks for the quantum information technology

Unsleber, Sebastian Philipp January 2016 (has links) (PDF)
Die vorliegende Arbeit hatte das Ziel basierend auf Halbleiternanostrukturen eine effiziente und skalierbare Quelle einzelner und ununterscheidbarer Photonen zu entwickeln. Dies ist eine Basiskomponente von zukünftigen quantenphysikalischen Anwendungen wie der Quantenkommunikation oder dem Quantencomputer. Diese Konzepte nutzen gezielt quantenmechanische Systeme um einerseits Kommunikation absolut abhörsicher zu machen oder um neuartige Computer zu konstruieren, die bestimmte Aufgaben - wie die Produktzerlegung großer Zahlen - effizienter lösen als heutige Systeme. Ein mögliche Realisierung der Quantenkommunikation ist beispielsweise die Schlüsselverteilung zwischen zwei Parteien durch Verwendung des BB84-Protokolls. Dazu wird eine Lichtquelle benötigt, welche die physikalisch kleinstmögliche Lichtmenge - ein einzelnes Photon - aussendet. Der Kommunikationskanal wird dann über verschiedene Polarisationszustände dieser Photonen gegen ein Abhören nach außen hin abgesichert. Da die maximale Kommunikationsdistanz aufgrund von Verlusten im Quantenkanal beschränkt ist, muss das Signal für größere Distanzen mit Hilfe eines sog. Quantenrepeaters aufbereitet werden. Ein solcher kann ebenfalls unter Verwendung von Einzelphotonenquellen realisiert werden. Das Konzept des Quantenverstärkers stellt aber die zusätzliche Anforderung an die Einzelphotonenquelle, dass die ausgesendeten Lichtteilchen in der Summe ihrer Eigenschaften wie Energie und Polarisation immer gleich und somit ununterscheidbar sein müssen. Auf Basis solcher ununterscheidbarer Photonen gibt es zudem mit dem linear optischen Quantenrechner auch mögliche theoretische Ansätze zur Realisierung eines Quantencomputers. Dabei kann über die Quanteninterferenz von ununterscheidbaren Photonen an optischen Bauteilen wie Strahlteilern ein Quanten-NOT-Gatter zur Berechnung spezieller Algorithmen realisiert werden. Als vielversprechende Kandidaten für eine solche Lichtquelle einzelner Photonen haben sich in den letzten Jahren Halbleiter-Quantenpunkte herauskristallisiert. Dank des festkörperbasierten Ansatzes können diese Strukturen in komplexe photonische Umgebungen zur Erhöhung der Photonen-Extraktionseffizienz und -Emissionsrate eingebettet werden. Ziel dieser Arbeit war somit eine effiziente Quelle einzelner ununterscheidbarer Photonen zu realisieren. Im Hinblick auf die spätere Anwendbarkeit wurde der Fokus zudem auf die skalierbare bzw. deterministische Fabrikation der Quantenpunkt-Strukturen gelegt und zwei technologische Ansätze - die kryogene in-situ-Lithographie und das positionierte Wachstum von Quantenpunkten - untersucht. Im ersten experimentellen Kapitel dieser Arbeit wird ein neuartiges Materialsystem vorgestellt, welches sich zur Generation einzelner Photonen eignet. Es können spektral scharfe Emissionslinien mit Linienbreiten bis knapp über 50 µeV aus Al$_{0,48}$In$_{0,52}$As Volumenmaterial beobachtet werden, wenn diese Schicht auf InP(111) Substraten abgeschieden wird. In Querschnitt-Rastertunnelmikroskopie-Messungen wurden ca. 16 nm große Cluster, welche eine um ungefähr 7 % höhere Indiumkonzentration im Vergleich zur nominellen Zusammensetzung des Volumenmaterials besitzen, gefunden. Über die Simulation dieser Strukturen konnten diese als Quelle der spektral scharfen Emissionslinien identifiziert werden. Zudem wurde mittels Auto- und Kreuzkorrelationsmessungen nachgewiesen, dass diese Nanocluster einzelne Photonen emittieren und verschieden geladene exzitonische und biexzitonische Ladungsträgerkomplexe binden können. Anschließend wurde der Fokus auf InGaAs-Quantenpunkte gelegt und zunächst im Rahmen einer experimentellen und theoretischen Gemeinschaftsarbeit die Kohärenzeigenschaften eines gekoppelten Quantenpunkt-Mikrokavität-Systems untersucht. Über temperaturabhängige Zwei-Photonen Interferenz Messungen und dem Vergleich mit einem mikroskopischen Modell des Systems konnten gezielt die Bestandteile der Quantenpunkt-Dephasierung extrahiert werden. Auf diesen Ergebnissen aufbauend wurde die gepulste, strikt resonante Anregung von Quantenpunkten als experimentelle Schlüsseltechnik etabliert. Damit konnten bei tiefen Temperaturen nahezu vollständig ununterscheidbare Photonen durch eine Zwei-Photonen Interferenz Visibilität von über 98 % nachgewiesen werden. Für ein skalierbares und deterministisches Quantenpunkt-Bauelement ist entweder die Kontrolle über die Position an welcher der Quantenpunkt gewachsen wird nötig, oder die Position an der eine Mikrokavität geätzt wird muss auf die Position eines selbstorganisiert gewachsenen Quantenpunktes abgestimmt werden. Im weiteren Verlauf werden Untersuchungen an beiden technologischen Ansätzen durchgeführt. Zunächst wurde der Fokus auf positionierte Quantenpunkte gelegt. Mittels in das Substrat geätzter Nanolöcher wird der Ort der Quantenpunkt-Nukleation festgelegt. Durch die geätzten Grenzflächen in Quantenpunkt-Nähe entstehen jedoch auch Defektzustände, die negativen Einfluss auf die Kohärenz der Quantenpunkt-Emission nehmen. Deshalb wurde an diesem Typus von Quantenpunkten die strikt resonante Anregung etabliert und zum ersten Mal die kohärente Kopplung des Exzitons an ein resonantes Lichtfeld demonstriert. Zudem konnte die deterministische Kontrolle der Exzitonbesetzung über den Nachweis einer Rabi-Oszillation gezeigt werden. Abschließend wird das Konzept der kryogenen in-situ-Lithographie vorgestellt. Diese erlaubt die laterale Ausrichtung der Mikrokavität an die Position eines selbstorganisiert gewachsenen Quantenpunktes. Damit konnte gezielt die Emission eines zuvor ausgewählten, spektral schmalen Quantenpunktes mit nahezu 75 % Gesamteffizienz eingesammelt werden. Die Ununterscheidbarkeit der Quantenpunkt-Photonen war dabei mit einer Zwei-Photonen Interferenz Visibilität von bis zu $\nu=(88\pm3)~\%$ sehr hoch. Damit wurde im Rahmen dieser Arbeit eine Einzelphotonenquelle realisiert, aus der sich sehr effizient kohärente Photonen auskoppeln lassen, was einen wichtigen Schritt hin zur deterministischen Fabrikation von Lichtquellen für quantenphysikalischen Anwendungen darstellt. / The aim of this thesis was to develop an efficient and scalable source of single and indistinguishable photons. This is a fundamental element of future quantum physical applications like quantum communication or quantum networks. These concepts use quantum mechanical systems to either establish absolute secure communication or to construct new computers, whose calculating capacity for specialized algorithms - like integer factorization - is far beyond today's systems. One possible realization of quantum communication is the key distribution between two parties via using the BB84-protocol. This scheme needs a lights source that emits the physical smallest amount of light - a single photon. The communication channel between transmitter and receiver is then secured against eavesdropping by different polarisation states of these photons. The non-avoidable loses in the quantum channel limit the maximum possible communication distance, which is why the signal has to be amplified with a so called quantum repeater after a certain distance. Such a repeater can also be realized with a single photon source. In addition to the BB84-protocol, for realizing the concept of a quantum repeater the photons have to share all their properties like energy and polarization, i. e. they need to be indistinguishable. Over the past years, semiconductor quantum dots have been identified as a promising candidate for such a light source. Due to the solid state scheme, these structures can be implemented into complex photonic architectures to increase the outcoupling efficiency and the emission rate of single photons. The main goal of the following work was therefore the realization of an efficient source of single and indistinguishable photons. Keeping future applications in mind, the additional focus of this work was lying on the scalable and deterministic fabrication of these quantum dot structures and two technological approaches - the cryogenic in-situ-lithography and the positioned growth of quantum dots - were investigated. In the first part of this thesis, a novel material system, which serves as a source of single photons is presented. Spectrally sharp emission features with a linewidth down to 50 µeV from bulk Al$_{0,48}$In$_{0,52}$As grown on InP(111) substrates were observed. Via cross-section scanning tunneling microscopy measurements, nanoclusters with a diameter of approximately 16 nm and a 7 % increased indium concentration compared to the nominal composition, were found. Additional simulations of these complexes identify these nanoclusters as sources of the spectrally sharp emissions lines. Furthermore, single photon emission as well as the formation of multi excitonic charge complexes within these clusters via auto- and crosscorrelation measurements is confirmed. Afterwards, the work focusses on InGaAs-quantum dots and, as a first step, the coherence properties of a coupled quantum dot microcavity system are investigated within a joint theoretical and experimental work. Via temperature dependent two-photon interference measurements the single dephasing mechanisms of this system are extracted via modelling the results with a microscopic theory. Based on this results, the strict resonant excitation of quantum dots was established as a experimental key technique and quantum dot photons with a two-photon interference visibility above 98 % were generated at low temperatures. For scalable and deterministic quantum dot devices, one either needs to control the growth spot of a quantum dot or the position of an etched microcavity has to be aligned to the position of a self-organized quantum dot. In the subsequent parts if this work, studies on both technological approaches are presented. First, spectroscopic experiments on site controlled quantum dots were carried out. Via etched nanoholes, the nucleation spot of the quantum dot is defined. These etched surfaces may lead to defect states, which decrease the coherence of the quantum dot emission. In order to avoid these detrimental influence, the strict resonant excitation of such site controlled quantum dots is established and the coherent coupling of the site controlled quantum dot exciton to the resonant laser field is observed. In addition, deterministic control of the site controlled quantum dot population is achieved, which is verified via the observation of the first Rabi-oscillation. Finally, the so-called in-situ-lithography is presented, which allows for the lateral alignment of a self-organized quantum dot and the fundamental mode of a micropillar. Using this technique, an overall collection efficiency of single photons from a pre-selected quantum dot with a small linewidth of almost 75 % is shown. The coherence of this quantum dot was notably, which is demonstrated by a two-photon interference visibility as high as $\nu=(88\pm3)~\%$. In summary, an efficient source of single and indistinguishable photons was realized in this thesis, which is an important step towards the fabrication of deterministic quantum dot devices for quantum mechanical applications.
33

Spin dynamics in the central spin model: Application to graphene quantum dots / Spin-Dynamik im zentralen Spin-Modell: Anwendung auf Graphen-Quantenpunkte

Fuchs, Moritz Jakob January 2016 (has links) (PDF)
Due to their potential application for quantum computation, quantum dots have attracted a lot of interest in recent years. In these devices single electrons can be captured, whose spin can be used to define a quantum bit (qubit). However, the information stored in these quantum bits is fragile due to the interaction of the electron spin with its environment. While many of the resulting problems have already been solved, even on the experimental side, the hyperfine interaction between the nuclear spins of the host material and the electron spin in their center remains as one of the major obstacles. As a consequence, the reduction of the number of nuclear spins is a promising way to minimize this effect. However, most quantum dots have a fixed number of nuclear spins due to the presence of group III and V elements of the periodic table in the host material. In contrast, group IV elements such as carbon allow for a variable size of the nuclear spin environment through isotopic purification. Motivated by this possibility, we theoretically investigate the physics of the central spin model in carbon based quantum dots. In particular, we focus on the consequences of a variable number of nuclear spins on the decoherence of the electron spin in graphene quantum dots. Since our models are, in many aspects, based upon actual experimental setups, we provide an overview of the most important achievements of spin qubits in quantum dots in the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors on a rather general ground. Subsequently, we elaborate on their effect in GaAs and graphene, which can be considered as prototype materials. Moreover, we also explain how the central spin model can be described in terms of open and closed quantum systems and which theoretical tools are suited to analyze such models. Based on these prerequisites, we then investigate the physics of the electron spin using analytical and numerical methods. We find an intriguing thermal flip of the electron spin using standard statistical physics. Subsequently, we analyze the dynamics of the electron spin under influence of a variable number of nuclear spins. The limit of a large nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master equation, which reveals a decoherence of the electron spin with a power-law decay on short timescales. Interestingly, we find a dependence of the details of this decay on the orientation of an external magnetic field with respect to the graphene plane. By restricting to a small number of nuclear spins, we are able to analyze the dynamics of the electron spin by exact diagonalization, which provides us with more insight into the microscopic details of the decoherence. In particular, we find a fast initial decay of the electron spin, which asymptotically reaches a regime governed by small fluctuations around a finite long-time average value. Finally, we analytically predict upper bounds on the size of these fluctuations in the framework of quantum thermodynamics. / Auf Grund ihres Potentials hinsichtlich der Realisierung eines Quantencomputers wurde Quantenpunkten im Laufe der letzten Jahre große Aufmerksamkeit zuteil. In diesen Halbleiterstrukturen können einzelne Elektronen kontrolliert eingeschlossen werden, deren Spin wiederum als Basis eines Quantenbits zu Speicherung von Informationen verwendet werden kann. Allerdings unterliegt das Elektron vielvältigen Wechselwirkungen mit seiner Umgebung, was oftmals zu einem sehr schnellen Verlust dieser Information führt. Eine der wichtigsten Ursachen stellt dabei die Hyperfeinwechselwirkung der Kernspins der Halbleiteratome mit dem Elektronspin dar. Eine vielversprechende Möglichkeit diesen Effekt zu minimieren besteht daher in der Verringerung der Anzahl an Kernspins durch Anreicherung spinfreier Isotope. Diese Strategie kann auf Bauteile, bestehend aus Elementen der IV. Gruppe des Periodensystems wie beispielsweise Kohlenstoff, angewendet werden. Ausgehend von dieser Möglichkeit, wird in der vorliegenden Arbeit das Verhalten des Elektronspins in (kohlenstoffbasierten) Graphenquantenpunkten im Rahmen des zentralen Spinmodells analysiert. Besonderes Augenmerk wird dabei auf die Abhängigkeit der Dekohärenzphänomene von der Kernspinzahl gelegt. Da sich die Modelle, auf denen diese Untersuchung basiert, an experimentellen Gegebenheiten orientieren, wird zunächst ein überblick über die wichtigsten experimentellen Errungenschaften präsentiert. Neben einer allgemeinen Behandlung der Spinwechselwirkungen in Halbleitern wird dabei auch speziell auf die Eigenschaften von GaAs- und Graphenquantenpunkten eingegangen, die beide als Musterbeispiele angesehen werden können. Des Weiteren wird erläutert, wie sich das zentrale Spinmodell als offenes bzw. geschlossenes Quantensystem beschreiben lässt und mit welchen theoretischen Methoden sich diese untersuchen lassen. Aufbauend auf diesen Erkenntnissen, wird dann das Verhalten des Elektronspins mit Hilfe analytischer und numerischer Methoden erforscht. Im Rahmen der statistischen Physik findet sich ein thermisch induzierter Wechsel der Spinorientierung. überdies wird die Zeitentwicklung des Elektronspins für unterschiedliche Kernspinzahlen analysiert. Der Limes großer Kernspinzahlen wird mit Hilfe der Nakajima-Zwanzig Mastergleichung untersucht, wobei sich für den zeitlichen Verlauf der Dekohärenz des Elektronspins ein Potenzgesetz findet. Die Details dieses Potenzgesetzes hängen dabei von der Orientierung eines äußeren Magnetfeldes ab. Eine Beschränkung auf sehr kleine Spinsysteme ermöglicht die Anwendung von exakter Diagonalisierung, welche zusätzliche Erkenntnisse über die mikroskopischen Vorgänge, die zu Dekohärenz führen, liefert. Insbesondere ist ein schneller übergang zu einem quasi-statischen Verhalten beobachtbar, das durch kleine Fluktuationen um einen Langzeitmittelwert gekennzeichnet ist. Für diese Fluktuationen konnten im Rahmen der Quantenthermodynamik zusätzlich analytische Obergrenzen gefunden werden.
34

Selbstorganisiertes Wachstum von (Ga)InAs/GaAs-Quantenpunkten und Entwicklung von Mikroresonatoren höchster Güte für Experimente zur starken Exziton-Photon-Kopplung

Löffler, Andreas January 2008 (has links)
Würzburg, Univ., Diss., 2008 / Zsfassung in engl. Sprache
35

The Kondo effect in quantum dots

Schmid, Jörg D. January 2000 (has links)
Stuttgart, Univ., Diss., 2000.
36

Der Kondo-Effekt in Quantendots bei hohen Magnetfeldern

Keller, Matthias. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
37

Vergleich von MBE-gewachsenen Quantenpunkten und Quantenfilmen für Laseranwendungen im Materialsystem GaInP

Manz, Yvonne Marianne, January 2003 (has links) (PDF)
Stuttgart, Univ., Diss., 2003.
38

Konzepte zur gezielten lateralen Positionierung selbstordnender InAs Quantenpunkte

Heidemeyer, Henry, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
39

Ab-initio Untersuchungen von Hetero- und Nanostrukturen ionischer Materialien

Leitsmann, Roman Unknown Date (has links) (PDF)
Jena, Univ., Diss., 2009
40

Biocompatible inorganic nanocrystals for fluorescence and CT imaging

Hezinger, Anna January 2010 (has links)
Regensburg, Univ., Diss., 2010.

Page generated in 0.5359 seconds