• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 12
  • 10
  • 10
  • 10
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Structures contrôlées pour les équations aux dérivées partielles / Controlled structures for partial differential equations

Furlan, Marco 26 June 2018 (has links)
Le projet de thèse comporte différentes directions possibles: a) Améliorer la compréhension des relations entre la théorie des structures de régularité développée par M. Hairer et la méthode des Distributions Paracontrolées développée par Gubinelli, Imkeller et Perkowski, et éventuellement fournir une synthèse des deux. C'est très spéculatif et, pour le moment, il n'y a pas de chemin clair vers cet objectif à long terme. b) Utiliser la théorie des Distributions Paracontrolées pour étudier différents types d'équations aux dérivés partiels: équations de transport et équations générales d'évolution hyperbolique, équations dispersives, systèmes de lois de conservation. Ces EDP ne sont pas dans le domaine des méthodes actuelles qui ont été développées principalement pour gérer les équations d'évolution semi-linéaire parabolique. c) Une fois qu'une théorie pour l'équation de transport perturbée par un signal irregulier a été établie, il sera possible de se dédier à l'étude des phénomènes de régularisation par le bruit qui, pour le moment, n'ont étés étudiés que dans le contexte des équations de transport perturbées par le mouvement brownien, en utilisant des outils standard d'analyse stochastique. d) Les techniques du Groupe de Renormalisation (GR) et les développements multi-échelles ont déjà été utilisés à la fois pour aborder les EDP et pour définir des champs quantiques euclidiens. La théorie des Distributions Paracontrolées peut être comprise comme une sorte d'analyse multi-échelle des fonctionnels non linéaires et il serait intéressant d'explorer l'interaction des techniques paradifférentielles avec des techniques plus standard, comme les "cluster expansions" et les méthodes liées au GR. / The thesis project has various possible directions: a) Improve the understanding of the relations between the theory of Regularity Structures developed by M.Hairer and the method of Paracontrolled Distributions developed by Gubinelli, Imkeller and Perkowski, and eventually to provide a synthesis. This is highly speculative and at the moment there are no clear path towards this long term goal. b) Use the theory of Paracontrolled Distributions to study different types of PDEs: transport equations and general hyperbolic evolution equation, dispersive equations, systems of conservation laws. These PDEs are not in the domain of the current methods which were developed mainly to handle parabolic semilinear evolution equations. c) Once a theory of transport equation driven by rough signals have been established it will become possible to tackle the phenomena of regularization by transport noise which for the moment has been studied only in the context of transport equations driven by Brownian motion, using standard tools of stochastic analysis. d) Renormalization group (RG) techniques and multi-scale expansions have already been used both to tackle PDE problems and to define Euclidean Quantum Field Theories. Paracontrolled Distributions theory can be understood as a kind of mul- tiscale analysis of non-linear functionals and it would be interesting to explore the interplay of paradifferential techniques with more standard techniques like cluster expansions and RG methods.
32

Generalised ladder operators, degeneracy and coherent states in two-dimensional quantum mechanics

Moran, James 11 1900 (has links)
Dans cette thèse, nous discutons de la dégénérescence et de la construction d’états cohérents généralisés dans les systèmes quantiques en deux dimensions d’espace. Nous développons un schéma pour obtenir des spectres non dégénérés et des combinaisons linéaires appropriées des états propres d’énergie correspondants. Lorsque la dégénérescence dans le spectre d’énergie est linéaire dans les nombres quantiques, nous définissons des opérateurs d’échelle général- isés qui conduisent à une chaîne d’états avec un ensemble naturel de coefficients. De plus, nous récupérons des relations de complétude pour les états généralisés. Lorsque le spectre d’énergie est quadratique dans les nombres quantiques, nous utilisons certains résultats de la théorie des nombres pour catégoriser la dégénérescence et, par conséquent, les combinaisons linéaires appropriées des états propres d’énergie associés. En particulier, nous étudions des oscillateurs harmoniques bidimensionnels isotropes et anisotropes ainsi que le potentiel Morse bidimensionnel et son partenaire supersymétrique non séparable. Dans tous les cas, nous construisons des états cohérents et discutons certains aspects de leur caractère non classique. On retrouve une certaine compression dans les quadratures conjuguées, une dépendance non triviale des variances des quadratures vis-à-vis des paramètres introduits lors de la définition des spectres non dégénérés, et un problème de localisation pour les fonctions d’onde. Comme application, nous étudions le problème de la quantification et de l’analyse semi-classique de l’espace des phases en deux dimensions en exploitant la complétude des familles généralisées d’états cohérents comprimés en deux dimensions. / In this thesis we discuss degeneracy and the construction of generalised coherent states in two-dimensional quantum systems. We develop a scheme for defining non-degenerate spectra and the corresponding averaged energy eigenstates. When the degeneracy in the spectrum is linear in the quantum numbers, we are able to define generalised ladder operators which lead to a chain of states with a natural set of coefficients. Additionally, we are able to recover completeness relations for the generalised states. On the other hand, when the spectrum is quadratic in the quantum numbers, we utilise some results from number theory to categorise the degeneracy and correspondingly the averaged energy eigenstates. In particular we study the two-dimensional isotropic and anisotropic oscillators as well the two-dimensional Morse potential and its non-separable supersymmetric partner. In all cases, we compute the coherent states and discuss certain aspects of their non-classicality. We find squeezing between conjugate quadratures, non-trivial dependence of the quadrature variances on the parameters introduced when defining the non-degenerate spectra, and non-localisation of wavefunctions. As an application, we study the problem of quantisation and semiclassical phase space analysis in two dimensions by exploiting the completeness of generalised families of two-dimensional squeezed coherent states.

Page generated in 0.078 seconds