Spelling suggestions: "subject:"quantum all"" "subject:"quantum fall""
91 |
Amélioration de la cohérence quantique dans le régime d'effet Hall quantique entier / Engineering quantum coherence in the integer quantum Hall effect regimeHyunh, Phuong-Anh 09 February 2012 (has links)
Cette thèse est consacrée à l'amélioration de la cohérence dans le régime d'effet Hall quantique entier (EHQE) à facteur de remplissage ν=2, obtenu en appliquant un fort champ magnétique perpendiculairement au plan d'un gaz bidimensionnel d'électrons formé à l'interface d'une hétérostructure semiconductrice d'AlGaAs/GaAs. On obtient alors des conducteurs unidimensionnels chiraux (états de bord) permettant de réaliser l'équivalent électronique de l'interféromètre de Mach-Zehnder (IMZ), pour étudier la cohérence dans ce régime. L'observation inattendue d'une structure périodique en forme de lobes dans la visibilité des interférences en fonction de la tension appliquée en entrée suggère un rôle non négligeable des interactions.Dans un première partie nous expliquons l'émergence des états de bord dans le régime d'EHQE. Nous faisons ensuite l'état de l'art des connaissances concernant leur cohérence, puis nous présentons l'IMZ électronique du point de vue expérimental.Ensuite, nous détaillons les résultats expérimentaux, d'abord concernant la visibilité à tension finie: nos mesures confirment une prédiction théorique concernant un transition de phase quantique en fonction de la dilution de l'état de bord qui interfère ; nous ne voyons pas d'effet flagrant de la relaxation en énergie. Enfin, de précédents travaux(1) ayant identifié clairement l'état de bord voisin de celui qui interfère comme l'environnement limitant la cohérence du système, nous avons réalisé un nouveau type d'échantillon afin de diminuer le couplage à cet environnement de manière contrôlée. Nous avons ainsi augmenté la cohérence de moitié en accord quantitatif avec la théorie issue de précédents travaux(1).(1)P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly. Noise Dephasing in Edge States of the Integer Quantum Hall Regime. Physical Review Letters, 101(18):186803–4, October 2008 / This PhD thesis is devoted to the engineering of quantum coherence in the integer quantum Hall effect regime (IQHE) at filling factor ν=2, obtained by applying a strong perpendicular magnetic field to a bidimensional electron gas formed at the interface of a GaAlAs/GaAs semiconducting heterostructure. Then unidimensional chiral conductors called edge states appear which can be used as electron beams to build the equivalent in condensed matter of a Mach-Zehnder interferometer (MZI) so as to study coherence in this regime. The unexpected periodic lobe structure of the visibility as function of the bias voltage suggests that interactions play an important role.In the first part, we explain how edge states emerge in the IQHE regime. We picture the state of the art on the edge states coherence. Then we present the MZI from the experimental point of view.Next we show our results, first concerning the visibility at finite bias: our measurements confirm a prediction about a quantum phase transition as function of the interfering edge state dilution. We don't see any significant manifestation of energy relaxation in the visibility. Finally, having identified the adjacent edge state as the noisy environment limitating coherence thanks to previous works, we have designed a new kind of sample to decrease the coupling of the system to this environment in a controlled manner. We thus decreased dephasing by half, in quantitative agreement with the theory developped previously in our group.
|
92 |
Quantum Hall effect in graphene for resistance metrology : Disorder and quantization / Effet Hall quantique dans le graphène pour la métrologie des résistances : désordre et quantificationLafont, Fabien 09 April 2015 (has links)
L’effet Hall quantique (EHQ) apparaissant dans des gaz bidimentionnels d’électrons places à basse température et sous fort champ magnétique a révolutionné la métrologie des résistances depuis sa découverte en 1980 par Klaus von Klitzing. Cet effet apporte une représentation de l’ohm uniquement basé sur la constante de Planck et la charge de l’électron. En 2004, le graphène, un arrangement purement bi-dimensionnel d’atomes de carbone en nid d’abeille, dans lequel les porteurs de charge se comportent comme des fermions de Dirac, a permis de mettre à jour une nouvel effet Hall quantique. Du point de vue de la métrologie des résistances l’EHQ dans le graphène est très prometteur car plus robuste que celui apparaissant dans les hétérostructures semi-conductrices. Ceci pourrait mener à la création d’un étalon de résistance plus pratique, fonctionnant à plus haute température et plus faible champ magnétique ce qui serait un avantage notable pour une dissémination accrue d’un étalon de résistance précis vers les acteurs industriels. Dans ce manuscrit une étude complète de l’impact des défauts linéaires, omniprésent dans le graphène crû par dépôt chimique en phase vapeur sur métal, dans le régime d’effet Hall quantique est menée. Nous avons montré que ces défauts linéaires mènent à des processus de dissipation non-conventionnels qui viennent altérer la quantification de la résistance de Hall. Cette étude pointe vers l’utilisation de monocristaux pour les prochaines investigations du graphène CVD pour une application en métrologie des résistances. La deuxième partie de ce manuscrit est dédiée à l’étude du graphène crû par dépôt chimique en phase vapeur sur carbure de silicium. Nous avons comparé précisément la résistance de Hall d’un échantillon de graphène entre 10 et 19 T à la température de 1.4 K avec celle donnée par un étalon de résistance en GaAs/AlGaAs avec une incertitude relative de ( -2 ± 4 ) × 10⁻¹⁰. Pour la première fois un étalon de résistance en graphène a pu fonctionner dans les mêmes conditions de température et de champs magnétique que celui fabriqué en GaAs/AlGaAs et de plus sur un intervalle de champ magnétique plus de dix fois plus grand. Nous avons également étudié les processus de dissipation apparaissant dans cet échantillon de graphène. Cette étude montre que la longueur de localisation des porteurs de charge sature à une valeur proche de l’extension de la fonction d’onde et ce sur une grande plage de champs magnétique, ce qui soulève des questions intéressantes concernant le désordre présent dans ce type de graphène. Finalement dans un second échantillon provenant de la même technique de fabrication nous avons comparé précisément la résistance de Hall de l’échantillon de graphène avec celle d’un étalon de résistance en GaAs/AlGaAs. Il apparait que la résistance de Hall dans l’échantillon de graphène est quantifié avec une précision métrologique pour des champs magnétiques allant jusqu’à 3.5 T, des températures atteignant 9 K et reste dans un état non dissipatif jusqu’à des courants de 500 µA. Ceci ouvre une voie directe à la réalisation d’étalons quantiques de résistance réalisés en graphène. / The quantum Hall effect (QHE) observed in two dimensional electron gas placed at low temperature and under a strong perpendicular magnetic field, has revolutionized the resistance metrology since its discovery in 1980 by Klaus von Klitzing. It provides a representation of the ohm based on the Planck constant and the electron charge only. In 2004, graphene, a purely two dimensional arrangement of carbon atoms in an honeycomb lattice, where the charge carriers behave as Dirac fermions, has revealed a new flavor of the QHE. From the metrological point of view the QHE in graphene is very promising since it is much more robust than the effect appearing in conventional semiconductors and it could lead to a more convenient resistance standard operating at higher temperature and lower magnetic induction which is an advantage for a broader dissemination of a precise standard towards industrial end-users. In this manuscript, a complete study about the impact in the QHE regime of line defects such as wrinkles or grain boundaries, ubiquitous in graphene grown by chemical vapor deposition on metal is treated. We show that these line defects lead to a non conventional dissipation mechanism that jeopardize the quantum Hall effect accuracy pointing to the use of wrinkle-free monocrystals for further metrological studies. The second part of my manuscript is focused on monolayer graphene grown by chemical vapor deposition on silicon carbide. We precisely compared the Hall resistance of the graphene sample from 10 T to 19 T at the temperature of 1.4 K with a GaAs/AlGaAs resistance standard with a relative uncertainty of ( -2 ± 4 ) × 10⁻¹⁰. For the first time a graphene-based standard was able to operate in the same temperature and magnetic field conditions as semiconductor-based one, furthermore, on a magnetic range more than ten times larger. We thus made a careful study of the dissipation mechanisms taking place in this sample and measured precisely the magnitude of the localization length in the QHE regime that saturate interestingly at the extension of the charge carrier wavefunction itself, opening interesting questions about the close link between Hall quantization and localization physics in graphene grown on SiC. Finally in a second sample grown using the same technique we precisely compared the Hall resistance of the graphene sample and a GaAs/AlGaAs resistance standard that turned out to be in agreement at the metrological level for magnetic fields as low as 3.5 T current as high as 500 µA and temperature as high 9 K. This paves the way for the realization of easy to use quantum Hall resistance standards made out of graphene.
|
93 |
Chasse aux papillons (quantiques) colorés : Une dérivation géométrique des équations TKNNDe Nittis, Giuseppe 29 October 2010 (has links) (PDF)
I consider the Hofstadter and the Harper operators, regarded as e ective models for a Bloch electron in a uniform magnetic eld, in the limit of weak and strong eld respectively. For each value of the Fermi energy in a spectral gap, I prove that the corresponding Fermi projectors exhibit a geometric duality, expressed in terms of some vector bundles canonically associated to the projectors. As a corollary, I get a rigorous geometric derivation of the TKNN equations. More generally, I prove that analogous equations hold true for any orthogonal projector in the rational rotation C -algebra, alias the algebra of the (rational) noncommutative torus.
|
94 |
Spectroscopie tunnel des Etats Liés d'Andreev dans un Nanotube de CarbonePillet, Jean-Damien 14 December 2011 (has links) (PDF)
La supraconductivité est un ordre électronique fascinant dans lequel les électrons s'apparient par le biais d'une interaction attractive et condensent dans un état quantique macroscopique pouvant porter un courant non dissipatif, i. E. Un supercourant. Dans les structures hybrides où des supraconducteurs (S) sont mis en contact avec des matériaux non supraconducteurs (X), les paires se propageant de S " contaminent " X lui conférant des propriétés supraconductrices à proximité de l'interface, parmi lesquels la possibilité de porter un supercourant. La transmission d'un supercourant à travers n'importe quelle structure S-X-S s'explique par l'interférence constructive de paires d'électrons traversant X. En effet, à la manière d'un résonateur Fabry-Perot, une telle interférence a seulement lieu pour certains états électroniques résonants appelés Etats Liés d'Andreev (ELA). Récemment, il est devenu possible de fabriquer une variété de nanostructures dans lesquelles X peut être par exemple un nanofil, un nanotube de carbone ou même une molécule. Ces dispositifs ont en commun que leur X contient seulement quelques électrons de conduction ce qui implique que les ELA sont aussi en petit nombre. Dans ce cas, pour comprendre quantitativement l'effet de proximité dans ces systèmes, il est nécessaire de comprendre en détail la formation des ELA individuellement. Ceci peut être vu comme la question centrale du développement d'électronique supraconductrice à l'échelle nanométrique. Dans cette thèse, nous avons observé des ELA résolus individuellement par spectroscopie tunnel dans un nanotube de carbone.
|
95 |
Diffusions électronique élastique et inélastique dans le graphène étudiées par le transport micro-onde et le bruit.Betz, Andreas 28 September 2012 (has links) (PDF)
This thesis discusses the elastic and inelastic scattering in monolayer graphene, investigated by means of microwave carrier dynamics and noise. We study in a first part the high frequency properties of graphene field‐effect transistors on different substrates. Particular interest lies in the figures of merit like e.g. the transit frequency fT, defining the transistor's current amplification capabilities, and the transconductance gm representing its gate sensitivity. High values are obtained for both parameters in GHz measurements. We find in particular that these figures remain substantial even in miniaturized devices. We introduce top‐gated graphene field‐effect capacitors as a probe of the elastic scattering mechanisms in graphene. Employing similar techniques as in the transistor experiments, we are able to directly access the diffusion constant D and its dependence on carrier density. The latter is the signature of the scattering mechanism present in the graphene sheet. Our novel GHz experiments reveal a constant transport scattering time as a function of energy which is in disagreement with conventional theoretical predictions, but supports the random Dirac mass disorder mechanism. Furthermore, we study inelastic scattering of charge carriers by acoustic phonons in graphene which is among the first realizations of such an experiment in a genuine two‐dimensional geometry. A broadband cryogenic noise thermometry setup is used to detect the electronic fluctuations, the current noise, from which we extract the average electron temperature Te as a function of Joule power P. At high bias we find P∝ΣTe^4 as predicted by theory and which is the tell‐tale sign of a 2D phonon cooling mechanism. From a heat equation analysis of data in a broad bias range, we extract accurate values of the electron‐acoustic phonon coupling constant Σ. Our measurements point to an important effect of lattice disorder in the electron‐phonon energy relaxation.
|
96 |
Transport thermoélectrique dans des contacts quantiques ponctuels et de cavités chaotiques: effets thermiques et fluctuationsAbbout, Adel 21 December 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse au transport quantique des électrons dans des nano-systèmes et des cavités chaotiques . En particulier, on apporte dans un premier temps la base théorique qui permet d'expliquer les expériences de microscopie à effet de grille dans des contacts quantiques ponctuels.
|
97 |
Magnetotransport in Two Dimensional Electron Systems Under Microwave Excitation and in Highly Oriented Pyrolytic GraphiteRamanayaka, Aruna N 07 August 2012 (has links)
This thesis consists of two parts. The first part considers the effect of microwave radiation on magnetotransport in high quality GaAs/AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron temperature was studied by investigating the amplitude of the Shubnikov de Haas (SdH) oscillations in a regime where the cyclotron frequency $\omega_{c}$ and the MW angular frequency $\omega$ satisfy $2\omega \leq \omega_{c} \leq 3.5\omega$. The results indicate negligible electron heating under modest MW photoexcitation, in agreement with theoretical predictions. Next, the effect of the polarization direction of the linearly polarized MWs on the MW induced magnetoresistance oscillation amplitude was investigated. The results demonstrate the first indications of polarization dependence of MW induced magnetoresistance oscillations. In the second part, experiments on the magnetotransport of three dimensional highly oriented pyrolytic graphite (HOPG) reveal a non-zero Berry phase for HOPG. Furthermore, a novel phase relation between oscillatory magneto- and Hall- resistances was discovered from the studies of the HOPG specimen.
|
98 |
Studies on the effects of low-field Landau quantization in a two-dimensional electron systemZhang, Yan-wei 21 July 2005 (has links)
In this paper, we mainly discuss the transport properties of the two-dimensional gas of a high-mobility GaAs/AlGaAs semiconductor heterostructure in high magnetic fields and low temperatures. We analyzed the measured longitudinal resistivity and Hall resistivity at the five different temperatures. We observed that the classical Hall effect is valid when the magnetic field is less than 0.25 Tesla; and the quantum Hall plateaux appeared obviously when the magnetic field is larger than 1.6 Tesla. We proceeded to analyze the longitudinal resistivity oscillation occurred in the magnetic fields between 0.477 Tesla and 1.483 Tesla. According to the Lifshitz-Kosevich (LK) formula, we can get the two-dimensional electron concentration, effective mass, and quantum scattering time from the quantum magnetoresistivity oscillation measurement. Our results suggested that the applicable range of the LK formula could be broader than the generally-assumed one. In quantum Hall effect regime at high magnetic field, we can calculate the h/e2 value from the quantum Hall plateaux value.
In classical Hall effect regime, the three-dimensional electron concentration and classical mobility (classical scattering time) can be obtained. However, we find out that the zero-field Hall resistivity experimental value is not equal to zero, and this is not conformed to the standard theory. We tried to use the magnetic field shift and Hall resistivity shift to solve the problem, and compared both advantages of them.
Finally, we observed the plateau-plateau phase transitions of the two-dimensional electron system
|
99 |
Contacts ponctuels quantiques dans le graphène de haute mobilité / Quantum point contact in high mobility grapheneZimmermann, Katrin 20 June 2016 (has links)
Dans le régime de l'effet Hall quantique, les porteurs de charge se propagent le long de canaux unidimensionnels situés au bords d'un gaz d'électron bidimensionel (2D electron gas, 2DEG). Un contact ponctuel quantique (quantum point contact, QPC) - une constriction étroite confinant spatialement le gaz électronique - permet de contrôler la transmission de ces canaux de bords. Dans un 2DEG conventionnel, une tension négative appliquée sur les grilles électrostatiques du QPC engendre la déplétion locale du gaz électronique sous la grille, forçant les électrons à se propager au travers de la constriction. Cependant, dans le graphène, du fait de l'absence de bande interdite, une tension négative provoque la transition continue du dopage d'électrons à trous. Dans le régime de l'effet Hall quantique, électrons et trous se propagent le long de l'interface p-n dans la même direction, et la diffusion inélastique induit un transfert de charge et du mélange entre eux.Au cours de cette thèse, nous avons fabriqué des dispositifs à base de graphène encapsulé dans deux feuillets de hBN, et munis de grilles électrostatiques définissant un QPC. Nous avons étudié l'effet du QPC sur la propagation des canaux de bords entiers et fractionnaires de l'effet Hall quantique, et sur le mélange entre eux. Dans l'effet Hall quantique, nous avons démontré que les canaux entiers et fractionnaires peuvent être contrôlés et sélectivement transmis au travers de la constriction. Du fait de la haute mobilité de nos structures, et de la levée de dégénérescence complète des niveaux de Landau qui en résulte à fort champ magnétique, l'équilibrage à l'interface p-n est réduit aux sous-niveaux de même spin et au niveau de Landau N=0.Un QPC dans le régime de l'effet Hall quantique constitue également un système idéal pour l'étude de l'effet tunnel des porteurs de charge entre canaux de bords fractionnaires, unidimensionnels et fortement corrélés, se propageant dans des directions opposées, décrits par la théorie de Tomonaga-Luttinger. Nous avons étudié l'effet tunnel entre canaux de bords fractionnaires dans notre structure muni un QPC, en nous concentrant sur l'état fractionnaire 7/3 et la dépendance en température de ses propriétés tunnels. / In the quantum Hall regime, the charge carriers are conducted within one-dimensional channels propagating at the edge of a two-dimensional electron gas (2DEG). A quantum point contact (QPC) – a narrow constriction confining spatially electron transport – can control the transmission of these quantum Hall edge channels. In conventional 2DEG systems, a negative voltage applied on the electrostatic split gates depletes locally the electrons underneath them forcing the electrons to pass through the constriction. In contrast, due to the absence of a band gap in graphene, a negative gate voltage induces a continuous shift of the doping from electrons to holes. In the quantum Hall regime, electron and hole edge channels propagate along the pn-interface in the same direction while inelastic scattering induces charge transfer and mixing between them.In this PhD thesis, we have fabricated ballistic graphene devices made by van der Waals stacking of hBN/Gr/hBN heterostructures, and equipped with split gates forming a quantum point contact (QPC) constriction. We have studied the effect of the QPC on the propagation of integer and fractional quantum Hall edge channels and the mixing among them. In the quantum Hall regime, we demonstrate that the integer and fractional quantum Hall edge channels can be controlled and selectively transmitted by the QPC. Due to the high mobility of our devices and the resultant full lifting of the degeneracies of the Landau levels in strong magnetic field, equilibration at the pn-interface is restricted to sublevels of identical spins of the N=0 Landau level.A QPC in the quantum Hall regime offers also an ideal system to study the tunnelling of charge carriers between counter-propagating fractional edge channels of highly correlated, one-dimensional fermions described by the theory of Tomonaga-Luttinger. We study the tunnelling between fractional quantum Hall edge channels in our QPC device in graphene and focus on the 7/3-fractional state to explore the temperature dependence of tunnelling characteristics.
|
100 |
Detection of travelling electrons in the Quantum Hall effect regime with a singlet-triplet quantum bit detector / Détection du déplacement d'électrons dans le régime de l'effet Hall Quantique à l'aide d'un singlet-triplet quantum bit détecteurThiney, Vivien 16 October 2017 (has links)
L’optique quantique avec électron est un domaine de recherche en expansion depuis ses débuts au cours des années 90 prenant suite aux premières expériences d’interférence avec électrons réalisées dans les années 80. Ce domaine est dédié à la réalisation d’expérience d’optique quantique avec des électrons plutôt que des photons. Leur intérêt est double, d’une part les électrons étant des fermions de nouveaux phénomènes, en comparaison des photons qui sont des bosons, peuvent être observés. L’électron anti-bunching, en comparaison du bunching des photons obtenu dans des expériences de corrélations en est un exemple. Le deuxième avantage des électrons est le fait qu’ils peuvent être contrôlés et manipulés à l’aide de champ électrique, un tel contrôle n’est pas possible avec des photons. Alors que les composants de base pour la réalisation de ces expériences sont déjà existant comme la lame séparatrice, ou encore les sources cohérentes à électrons uniques, la détection immédiate d’un électron unique dans de telles expériences est toujours manquante. La difficulté étant le faible temps d’interaction entre l’électron en déplacement et le détecteur de charge qui est limité typiquement à moins de 1ns principalement à cause de la vitesse élevée de déplacement de l’électron qui est égale à la vitesse de Fermi soit 10-100km/s. Ce temps d’interaction est environ deux ordres de grandeurs plus petits que ce qui est nécessaire pour le meilleur détecteur de charge démontré jusqu’à présent.Dans ce manuscrit est présenté le développement d’un détecteur ultra-sensible pour la détection immédiate d’un électron se déplaçant à la vitesse de Fermi. Notre stratégie est de détecter un électron unique se déplaçant dans les canaux de bords (ECs) de l’effet Hall quantique à partir de la mesure d’une variation de phase d’un bit quantique singlet-triplet, appelé qubit détecteur par la suite. La détection immédiate de cet électron en déplacement n’étant possible que si l’interaction avec ce dernier induit une variation de phase de pi, avec une lecture immédiate de l’état de spin du qubit détecteur.Grâce au développement et à l’utilisation d’un RF-QPC, cette lecture immédiate de l’état de spin est tout d’abord démontrée. Par la suite le développement du qubit détecteur avec la réalisation d’oscillations cohérentes d’échange est décrit. Sa sensibilité en charge est démontrée avec l’observation d’une phase induite par l’interaction avec un courant d’électrons dans les ECs. Ce courant est imposé par l’application d’un biais de tension contrôlant le potentiel chimique de ces ECs.Après optimisation de ce qubit détecteur pour la détection d’un électron unique, il est calibré en utilisant le même procédé de courant imposé par application d’un biais de tension. Cette calibration nous fournie la variation de signal attendue pour l’interaction avec cette charge unique est indique que sa détection immédiate est impossible dans nos conditions expérimentales. Notre détecteur ayant une sensibilité de charge de l’ordre de 8.10-5 pour une bande passante allant de DC à 1THz. Cette sensibilité est environ deux ordres de grandeur trop petite que ce qui est nécessaire pour la détection immédiate de cette charge unique. Finalement, ce qubit détecteur est utilisé pour détecté, dans une expérience moyennée, ce qui est appelé un edge magneto plasmon composé par moins de 5 électrons. Néanmoins, atteindre la détection de la charge unique dans n’a pas été possible, la sensibilité en charge étant légèrement trop petite pour y arriver.Les différentes limites de notre détecteur sont listées et expliquées tout au long du manuscrit, avec une présentation de différents axes de développement qui devraient permettre de réussir cette détection d’un électron unique dans une nouvelle expérience. / The electron quantum optics field is a research topic with an interest growing over the years since the 80's and the first interference experiment with electrons. This field is dedicated to the implementation of quantum optics experiments with electrons instead of photon. The advantage is twofold, one is the fermion nature of the electrons which ensure the observation of phenomenon which cannot be observed with photon (boson), the anti-bunching of the electrons in correlation experiments contrary to the bunching for photons illustrates this point. The second advantage is the possibility to interact and control electrons with electric fields since they are charged particles. Such control does not exist with photon. In addition to these fundamental experiments, it has been recently demonstrated that this topic presents a possible candidate for quantum information with so called flying qubit. While the based components to mimic the quantum optics experiments are already demonstrated like the beam splitter, phase shifter or coherent single electron source, the single electron detection in a single shot manner in such system is still lacking. The difficulty being the short interaction time between the travelling charge and the charge detector, being of less than 1ns in such system where the electron propagate at the Fermi velocity 10-100km/s. This interaction is approximately two orders of magnitude shorter than what is required with the actual best on chip charge detector.In this thesis is presented the development of an ultra-sensitive detector for the single shot detection of an electron travelling at the Fermi velocity. Our strategy was to detect a single travelling electron propagating in the edge channels (ECs) of the quantum Hall effect by measuring the induced phase shift of a singlet-triplet qubit, referred as to the qubit detector. The single shot detection being only possible if the interaction with the travelling electron induces a complete π phase shift and the spin readout of the qubit detector being performed in a single shot manner.Thanks to the development and use of a RF-QPC the single shot spin readout of the qubit detector has been first demonstrated. Its development with the implementation of coherent exchange oscillations is then described. The charge sensitivity of the qubit detector is validated in an experiment consisting in recording a phase shift of these oscillations due to the interaction with an imposed flow of electrons in the ECs. This flow of electron was induced by a DC voltage bias applied on the ECs to tune their chemical potential.This qubit detector is then optimised for the single travelling charge detection. Its calibration has been implemented using the same imposed flow of electrons by application of a DC bias. This calibration provides the expected signal variation induced by the interaction with a single travelling electron, and indicates the impossibility to implement this detection in a single shot manner in our experimental conditions. Our detector exhibits a charge sensitivity estimated close to 8.10-5 e/Hz-1/2 for a detection bandwidth from DC to 1 THz. The sensitivity is close to two orders of magnitude smaller than required for a single shot detection. Finally this qubit detector has been employed to detect in average measurements an edge magneto plasmon composed by less than 5 electrons. However, the single electron level could not be reached in statistical measurement neither, the sensitivity of our qubit detector being too limited.The different limitations of our experiment are listed and explained with the presentation of different axes of development which could permit to succeed this detection in another experiment.
|
Page generated in 0.0618 seconds