• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

QED and collective effects in vacuum and plasmas

Lundin, Joakim January 2010 (has links)
The theory of quantum electrodynamics (QED) was born out of an attempt to merge Einsteins theory of special relativity and quantum mechanics. Einsteins energy/mass equivalence together with Heisenberg's uncertainty principle allows for particle pairs to be spontaneously created and annihilated in vacuum. These spontaneous fluctuations gives the quantum vacuum properties analogous to that of a nonlinear medium. Although these fluctuations in general does not give note of themselves, effects due to their presence can be stimulated or enhanced through external means, such as boundary conditions or electromagnetic fields. Whereas QED has been very well tested in the high-energy, low-intensity regime using particle accelerators, the opposite regime where the photon energy is low but instead the intensity is high is still to a large degree not investigated. This is expected to change with the rapid progress of modern high-power laser-systems. In this thesis we begin by studying the QED effect of photon-photon scattering. This process has so far not been successfully verified experimentally, but we show that this may change already with present day laser powers. We also study QED effects due to strong magnetic fields. In particular, we obtain an analytical description for vacuum birefringence valid at arbitrary field strengths. Astrophysics already offer environments where QED processes may be influential, e.g. in neutron star and magnetar environments. For astrophysical purposes we investigate how effects of QED can be implemented in plasma models. In particular, we study QED dispersive effects due to weak rapidly oscillating fields, nonlinear effects due to slowly varying strong fields, as well as QED effects in strongly magnetized plasmas. Effects of quantum dispersion and the electron spin has also been included in an extended plasma description, of particular interest for dense and/or strongly magnetized systems.
2

Vacuum Energy for a Scalar Field with Self-Interaction in (1 + 1) Dimensions

Bordag, Michael 08 May 2023 (has links)
We calculate the vacuum (Casimir) energy for a scalar field with ϕ4 self-interaction in (1 + 1) dimensions non perturbatively, i.e., in all orders of the self-interaction. We consider massive and massless fields in a finite box with Dirichlet boundary conditions and on the whole axis as well. For strong coupling, the vacuum energy is negative indicating some instability.
3

LEVITATED OPTOMECHANICS NEAR A SURFACE

Peng Ju (19138651) 17 July 2024 (has links)
<p dir="ltr">Following the development of laser technology in the 1960s, radiation pressure was soon employed to manipulate particles by Arthur Ashkin in the 1970s. Since then, levitated optomechanics has been widely studied across physics, engineering, chemistry, and biology. In this dissertation, we first experimentally demonstrate GHz rotation and sensing with an optically levitated nanodumbbell near a surface. Then, we propose achieving optical refrigeration below liquid nitrogen temperature using near-field Purcell enhancement.</p><p dir="ltr">The first part of this dissertation focuses on fast rotation and sensing with a non-spherical silica nanoparticle levitated near a surface. Specifically, we optically levitate a nanodumbbell at 430 nm away from a surface in high vacuum and drive it to rotate at 1.6 GHz. This corresponds to a relative linear velocity of 1.4 km/s between the tip of the nanodumbbell and the surface at sub-micrometer separation. The near-surface rotating nanodumbbell demonstrates a superior torque sensitivity of (5.0 +/- 1.1 ) x 10<sup>-26</sup> Nm at room temperature. Our numerical simulation shows that such an ultra-sensitive nanodumbbell levitated near nanostructures can be used to detect fundamental physics, such as Casimir torque and non-Newtonian gravity. </p><p dir="ltr">In the latter part of this dissertation, we propose that optical refrigeration of solid with anti-Stokes fluorescence can be enhanced by Purcell effect. The spontaneous emission rate of high-energy photons is Purcell enhanced by coupling with a near-field cavity. The enhanced emission shifts the mean emission wavelength and enables optical refrigeration with high-absorption cooling laser. We estimate a minimum achievable temperature of 38 K with a Yb<sup>3+</sup>:YLiF<sub>4</sub> nanocrystal near a cavity using our proposed Purcell enhanced optical refrigeration method. This method can be applied to other rare-earth ion doped materials and enable applications that require solid-state cooling below liquid nitrogen temperature.</p>
4

OPTOMECHANICS WITH QUANTUM VACUUM FLUCTUATIONS

Zhujing Xu (13150383) 25 July 2022 (has links)
<p>One of the fundamental predictions of quantum mechanics is the occurrence of random fluctuations which can induce a measurable force between neutral objects, known as the Casimir effect. Casimir effect has attracted a lot of interest in both theoretical and practical work since the first prediction in 1948 because it is the most accessible evidence of quantum electromagnetic fluctuations in vacuum. Besides, it has prospective applications for nanotechnology and for studying fundamental physical theories beyond the standard model. In this dissertation, we report the experimental and theoretical progress towards realizing Casimir-based devices and long sought-after vacuum friction. </p> <p><br></p> <p>First, we propose and experimentally realize the first Casimir diode system that can regulate energy transfer along one direction through quantum vacuum fluctuations. This is the first experimental demonstration of non-reciprocal energy transfer by Casimir effects. We develop a dual-cantilever vacuum system which can be used to measure the Casimir force at separations from 50 nm to 1000 nm.  Parametric coupling scheme is applied to the system to couple two cantilevers with different resonant frequencies by Casimir interaction. By controlling the system near the exceptional point, we are able to break the time reversal symmetry and observe the non-reciprocal energy transfer. </p> <p><br></p> <p>The description of the Casimir diode system is followed by an experimental demonstration of the Casimir transistor system where we achieve the first measurement of Casimir interaction between three macroscopic objects. Three cantilevers can be coupled through quantum vacuum fluctuations by the parametric coupling scheme. Moreover, we have realized the first three-terminal Casimir transistor system that can switch and amplify quantum vacuum mediated energy transfer. These two Casimir-based devices will have potential applications in sensing and information processing.  </p> <p><br></p> <p>Subsequently, the first observation of Casimir mediated non-contact friction is demonstrated experimentally. When two parallel surfaces are moving with a relative velocity, they will experience quantum vacuum friction force which tries to slow down the relative motion because of quantum vacuum fluctuations. The quantum vacuum friction comes from the exchange of virtual photons between two moving bodies.  We have designed a novel method to detect the Casimir force mediated non-contact friction force between two harmonic oscillators. The non-contact friction comes from the interaction of virtual photons and phonons. We have experimentally detected the effect of non-contact friction and successfully measured the friction force at different velocities. </p> <p><br></p> <p>In the latter part of this thesis, two theoretical proposals about detecting the Casimir torque and rotational quantum vacuum friction torque by a levitated optomechanical system are discussed. The optically levitated nanoparticle system is a good candidate for precision measurements because it can achieve an ultrahigh mechanical quality factor due to the well isolation from the thermal environment. The calculation of the Casimir torque on a levitated nanorod near a birefringent plate is demonstrated. The calculation of the rotational quantum vacuum friction torque on a rotating nanosphere near a plate is also presented. By comparing these small torques to the sensitivity of our levitation system, we show that it is feasible to detect the Casimir torque and the rotational quantum vacuum friction torque under realistic conditions in the near future. </p> <p><br></p>
5

Hawking radiation in dispersive media

Robertson, Scott James January 2011 (has links)
Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking’s prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking emission spectra in dispersive systems. It examines two black-hole analogue systems: it begins by introducing the well-known acoustic model, presenting some original results in that context; then, through analogy with the acoustic model, goes on to develop the lesser-known fibre-optical model. The following original results are presented in the context of both of these models: • an analytic expression for the low-frequency temperature is found for a hyperbolic tangent background profile, valid in the entire parameter space; it is well-known that the spectrum is approximately thermal at low frequencies, but a universally valid expression for the corresponding temperature is an original development; • an analytic expression for the spectrum, valid over almost the entire frequency range, when the velocity profile parameters lie in the regime where the low-frequency temperature is given by the Hawking prediction; previous work has focused on the low-frequency thermal spectrum and the characterization of the deviations from thermality, rather than a single analytic expression; and • a new unexplored regime where no group-velocity horizon exists is examined; the Hawking spectra are found to be non-zero here, but also highly non-thermal, and are found, in the limit of small deviations, to vary with the square of the maximum deviation; the analytic expression for the case with a horizon is found to carry over to this new regime, with appropriate modifications. Furthermore, the thesis examines the results of a classical frequency-shifting experiment in the context of fibre-optical horizons. The theory of this process is presented for both a constant-velocity and a constantly-decelerating pulse, the latter case taking account of the Raman effect. The resulting spectra are at least qualititively explained, but there is a discrepancy between theory and experiment that has not yet been accounted for.
6

Pair Production and the Light-Front Vacuum

Ghorbani Ghomeshi, Ramin January 2013 (has links)
Dominated by Heisenberg's uncertainty principle, vacuum is not quantum mechanically an empty void, i.e. virtual pairs of particles appear and disappear persistently. This nonlinearity subsequently provokes a number of phenomena which can only be practically observed by going to a high-intensity regime. Pair production beyond the so-called Sauter-Schwinger limit, which is roughly the field intensity threshold for pairs to show up copiously, is such a nonlinear vacuum phenomenon. From the viewpoint of Dirac's front form of Hamiltonian dynamics, however, vacuum turns out to be trivial. This triviality would suggest that Schwinger pair production is not possible. Of course, this is only up to zero modes. While the instant form of relativistic dynamics has already been at least theoretically well-played out, the way is still open for investigating the front form. The aim of this thesis is to explore the properties of such a contradictory aspect of quantum vacuum in two different forms of relativistic dynamics and hence to investigate the possibility of finding a way to resolve this ambiguity. This exercise is largely based on the application of field quantization to light-front dynamics. In this regard, some concepts within strong field theory and light-front quantization which are fundamental to our survey have been introduced, the order of magnitude of a few important quantum electrodynamical quantities have been fixed and the basic information on a small number of nonlinear vacuum phenomena has been identified. Light-front quantization of simple bosonic and fermionic systems, in particular, the light-front quantization of a fermion in a background electromagnetic field in (1+1) dimensions is given. The light-front vacuum appears to be trivial also in this particular case. Amongst all suggested methods to resolve the aforementioned ambiguity, the discrete light-cone quantization (DLCQ) method is applied to the Dirac equation in (1+1) dimensions. Furthermore, the Tomaras-Tsamis-Woodard (TTW) solution, which expresses a method to resolve the zero-mode issue, is also revisited. Finally, the path integral formulation of quantum mechanics is discussed and, as an alternative to TTW solution, it is proposed that the worldline approach in the light-front framework may shed light on different aspects of the TTW solution and give a clearer picture of the light-front vacuum and the pair production phenomenon on the light-front.
7

The quantum vacuum near time-dependent dielectrics

Bugler-Lamb, Samuel Lloyd January 2017 (has links)
The vacuum, as described by Quantum Field Theory, is not as empty as classical physics once led us to believe. In fact, it is characterised by an infinite energy stored in the ground state of its constituent fields. This infinite energy has real, tangible effects on the macroscopic clusters of matter that make up our universe. Moreover, the configuration of these clusters of matter within the vacuum in turn influences the form of the vacuum itself and so forth. In this work, we shall consider the changes to the quantum vacuum brought about by the presence of time-dependent dielectrics. Such changes are thought to be responsible for phenomena such as the simple and dynamical Casimir effects and Quantum Friction. After introducing the physical and mathematical descriptions of the electromagnetic quantum vacuum, we will begin by discussing some of the basic quasi-static effects that stem directly from the existence of an electromagnetic ground state energy, known as the \textit{zero-point energy}. These effects include the famous Hawking radiation and Unruh effect amongst others. We will then use a scenario similar to that which exhibits Cherenkov radiation in order to de-mystify the 'negative frequency' modes of light that often occur due to a Doppler shift in the presence of media moving at a constant velocity by showing that they are an artefact of the approximation of the degrees of freedom of matter to a macroscopic permittivity function. Here, absorption and dissipation of electromagnetic energy will be ignored for simplicity. The dynamics of an oscillator placed within this moving medium will then be considered and we will show that when the motion exceeds the speed of light in the dielectric, the oscillator will begin to absorb energy from the medium. It will be shown that this is due to the reversal of the 'radiation damping' present for lower velocity of stationary cases. We will then consider how the infinite vacuum energy changes in the vicinity, but outside, of this medium moving with a constant velocity and show that the presence of matter removes certain symmetries present in empty space leading to transfers of energy between moving bodies mediated by the electromagnetic field. Following on from this, we will then extend our considerations by including the dissipation and dispersion of electromagnetic energy within magneto-dielectrics by using a canonically quantised model referred to as 'Macroscopic QED'. We will analyse the change to the vacuum state of the electromagnetic field brought about by the presence of media with an arbitrary time dependence. It will be shown that this leads to the creation of particles tantamount to exciting the degrees of freedom of both the medium and the electromagnetic field. We will also consider the effect these time-dependencies have on the two point functions of the field amplitudes using the example of the electric field. Finally, we will begin the application of the macroscopic QED model to the path integral methods of quantum field theory with the purpose of making use of the full range of perturbative techniques that this entails, leaving the remainder of this adaptation for future work.
8

Quantum Coherence and Quantum-Vacuum Effects in Some Artificial Electromagnetic Media

Shen, Jianqi January 2009 (has links)
The author of this thesis concentrates his attention on quantum optical properties of some artificial electromagnetic media, such as quantum coherent atomic vapors (various multilevel electromagnetically induced transparency vapors) and negative refractive index materials, and suggests some possible ways to manipulate wave propagations inside the artificial electromagnetic materials based on quantum coherence and quantum vacuum effects. In Chapters 1 and 2, the author reviews the previous papers on quantum coherence as well as the relevant work such as electromagnetically induced transparency (EIT), atomic population trapping and their various applications. The basic concepts of quantum coherence (atomic phase coherence, quantum interferences within atomic energy levels) and quantum vacuum are introduced, and the theoretical formulations for treating wave propagations in quantum coherent media are presented. In Chapter 3, the author considers three topics on the manipulation of light propagations via quantum coherence and quantum interferences: i) the evolutional optical behaviors (turn-on dynamics) of a four-level N-configuration atomic system is studied and the tunable optical behavior that depends on the intensity ratio of the signal field to the control field is considered. Some typical photonic logic gates (e.g. NOT and NOR gates) are designed based on the tunable four-level optical responses of the N-configuration atomic system; ii) the destructive and constructive quantum interferences between two control transitions (driven by the control fields) in a tripod-type four-level system is suggested. The double-control quantum interferences can be utilized to realize some photonic devices such as the logic-gate devices, e.g., NOT, OR, NOR and EXNOR gates; iii) some new quantum coherent schemes (using EIT and dressed-state mixed-parity transitions) for realizing negative refractive indices are proposed. The most remarkable characteristic (and advantage) of the present scenarios is such that the isotropic left-handed media (with microscopic structure units at the atomic level) in the optical frequency band can be achieved. Quantum vacuum (the ground state of quantized fields) can exhibit many interesting effects. In Chapter 4, we investigate two quantum-vacuum effects in artificial materials: i) the anisotropic distribution of quantum-vacuum momentum density in a moving electromagnetic medium; ii) the angular momentum transfer between quantum vacuum and anisotropic medium. Such quantum-vacuum macroscopic mechanical effects could be detected by current technology, e.g., the so-called fiber optical sensor that can measure motion with nanoscale sensitivity. We expect that these vacuum effects could be utilized to develop sensitive sensor techniques or to design new quantum optical and photonic devices.In Chapter 5, the author suggests some interesting effects due to the combination of quantum coherence and quantum vacuum, i.e., the quantum coherent effects, in which the quantum-vacuum fluctuation field is involved. Two topics are addressed: i) spontaneous emission inhibition due to quantum interference in a three-level system; ii) quantum light-induced guiding potentials for coherent manipulation of atomic matter waves (containing multilevel atoms). These quantum guiding potentials could be utilized to cool and trap atoms, and may be used for the development of new techniques of atom fibers and atom chips, where the coherent manipulation of atomic matter waves is needed.In Chapter 6, we conclude this thesis with some remarks, briefly discuss new work that deserves further consideration in the future, and present a guide to the previously published papers by us. / QC 20100810

Page generated in 0.0818 seconds