• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification of Fungicide Resistance in Cercospora sojina Populations and Development of a Fungicide Application Decision Aid for Soybean in the Mid-Atlantic U.S.

Zhou, Tian 09 October 2019 (has links)
Soybean is an important source of protein in animal feed, and growing demand for meat consumption worldwide has led to increased soybean production. Over 120 million metric tons of soybean were harvested in the United States in 2018, approximately one-third of the world production. In the Mid-Atlantic region, soybean is one of the most valuable field crops. Major foliar diseases that reduce soybean yield in the Mid-Atlantic region are frogeye leaf spot (FLS) and Cercospora leaf blight. In addition to crop rotation and host resistance, foliar fungicides, often with quinone outside inhibitor (QoI) active ingredients, are used to manage these soybean foliar diseases. Yield benefits of foliar fungicides have been inconsistent and this may be the result of low disease pressure, unfavorable environmental conditions for disease development, or the presence of fungal pathogen populations that have developed resistance to fungicides. The objectives of this research were 1) to develop a pyrosequencing-based assay to rapidly quantify QoI resistance frequencies in Cercospora sojina, the causal agent of FLS, 2) to examine the effects of fungicide application timings, disease pressure, and environmental factors on soybean yield, and 3) to develop a weather-based soybean foliar fungicide application decision aid for the Mid-Atlantic U.S. using a threshold decision rule. A pyrosequencing assay targeting the G143A mutation was designed, and a Virginia survey of C. sojina populations indicated that the G143A mutation conferring QoI resistance is widespread. In small plot fungicide application timing experiments, five weekly fungicide applications starting at beginning pod (R3) resulted in the greatest yield, but for single fungicide applications, R3 or 1 week after R3 resulted in the greatest yields. There was positive relationship between the cumulative number of disease favorable days (mean daily temperature 20-30°C and ≥ 10 hours of relative humidity >90%) from planting to R3 and disease severity at the full pod stage (r = 0.97, P = <0.01). Higher disease severity was associated with greater yield loss (r2 =0.53, P = 0.10) suggesting foliar fungicide applications are more likely to have yield benefits as the number of disease favorable days prior to R3 increase. A disease favorable-days threshold (FDT) using the environmental parameters indicated above was evaluated in on-farm experiments throughout Virginia, Maryland, and Delaware. Based on decision rules, FDT = 8 three weeks prior to R3 was the best predictor of a yield benefit with an R3 fungicide application. The decision aid was also able to correctly predict when a fungicide application would not be profitable ≥90% of the time. This weather-based decision aid along with monitoring of fungicide resistance development within the region will provide soybean growers in the Mid-Atlantic U.S. with tools to maximize yields and profitability. / Doctor of Philosophy / Soybean is the third most valuable field crop in the world, ranked only behind rice and wheat in value. Over 98% of the soybean crop is used for animal feed due to its high protein content. The United States is the largest soybean producer in the world, responsible for one-third of global production. Soybean is the top cash crop in the Mid-Atlantic region. Foliar fungal diseases can reduce the soybean yield by causing lesions on the leaves that reduce photosynthesis and cause premature defoliation. Frogeye leaf spot (FLS) caused by Cercospora sojina is a major yield reducing soybean foliar diseases in the Mid-Atlantic region. Foliar fungicides, often with quinone outside inhibitor (QoI) active ingredients, are used to manage the disease. However, fungicide efficacy has been inconsistent. Inconsistencies may be due to low disease pressure, improper application timing, or fungicide resistance. The purpose of this research was to investigate the fungicide efficacy inconsistencies and to develop management tools to improve yield and maximize profitability. Our objectives were to 1) develop a molecular assay to quantify frequencies of the mutation conferring fungicide resistance in Virginia populations of C. sojina, 2) examine the effects of fungicide application timings, disease severity, and weather on soybean yield, and 3) develop a weather-based soybean foliar fungicide application decision aid for the Mid-Atlantic U.S. The C. sojina fungicide resistance mutation was widespread in Virginia, but overall frequencies were relatively low compared to findings from Midwest and Southern states. In fungicide timing experiments, beginning pod (R3) applications resulted in the most consistent yield benefits, and disease severity and yield loss increased as the number of weather-based disease favorable days prior to R3 increased. We used data from on-farm experiments in Virginia, Maryland, and Delaware to develop a weather-based disease favorable-days threshold that increased the probability that a fungicide application at R3 would have a yield benefit in soybean. The results of our research have led improved fungal disease management recommendations for soybean in the Mid-Atlantic that will maximize yields and profitability.
2

Characterization of Corynespora cassiicola resistance to the quinone outside inhibitor fungicides, elucidation of fitness parameters, and defining alternative fungicide product strategies in Mississippi soybean

Wang, Xiaopeng 13 May 2022 (has links) (PDF)
Target spot, caused by Corynespora cassiicola, is a common lower canopy disease of soybean in the southern United States. Given the recent resurgence of target spot and increasing reports of resistance to the quinone outside inhibitor (QoI) fungicide class within C. cassiicola, a survey of C. cassiicola from the Mississippi soybean production system was initiated in 2019 to determine the nature of its resistance mechanisms. A total of 819 monoconidial isolates were collected from 228 geographic field locations in 75 Mississippi counties. The molecular mechanism of resistance was determined using a PCR-RFLP analysis by comparing nucleotide sequences in the cytochrome b gene. The percentage of isolates containing the G143A substitution increased from 71.3% in 2016 to 93.5% in 2021. In all, 85.8% of the C. cassiicola isolates carried the G143A substitution. The EC50 values of QoI-resistant and -sensitive isolates to azoxystrobin varied significantly with QoI-sensitive isolates exhibiting lower EC50 values than QoI-resistant isolates. Moreover, results of fitness evaluations indicated that QoI-resistant isolates are more competitive than QoI-sensitive isolates and there were no fitness costs associated with QoI resistance in C. cassiicola. Additionally, the sensitivity of six C. cassiicola isolates to eight fungicide active ingredients in four fungicide classes were evaluated. Results indicated that three succinate dehydrogenase inhibitors benzovindiflupyr, fluxapyroxad, and pydiflumetofen were the most effective in inhibiting mycelial growth regardless of isolate phenotype followed by the methyl benzimidazole carbamate thiophanate-methyl, two demethylation inhibitors (DMI) difenoconazole and flutriafol, the QoI pyraclostrobin, and the DMI prothioconazole. Furthermore, the efficacy of seven commercial fungicides on target spot was evaluated in the greenhouse and field. Pydiflumetofen + difenoconazole, fluxapyroxad + pyraclostrobin, and thiophanate-methyl delayed disease progress and protected soybean yield, which indicated their effectiveness in managing target spot. Pydiflumetofen + difenoconazole also significantly reduced defoliation. Notably, fungicides applied at R3 were more effective in reducing disease severity and defoliation than additional growth stage timings. The current study revealed a reduction in C. cassiicola sensitivity to QoI fungicides and a shift to QoI-resistant populations exhibiting fitness advantages. Our findings provide pertinent information for growers as to which fungicides should be recommended to manage target spot.
3

Genotypic characterization and fungicide resistance monitoring for Virginia populations of Parastagonospora nodorum in wheat

Kaur, Navjot 28 June 2021 (has links)
Stagonospora nodorum blotch (SNB), is a major foliar disease of wheat in the mid-Atlantic U.S., is caused by the necrotrophic fungus Parastagonospora nodorum. SNB is managed using cultural practices, resistant varieties, and foliar fungicides. There are increasing trends of severity and incidence of SNB in Virginia and the surrounding mid-Atlantic region, but it is not known if changes in the pathogen population are contributing to this trend. The overall goal of this research was to 1) determine the occurrence of quinone outside inhibitor (QoI) resistance in Virginia populations of P. nodorum infecting wheat, 2) quantify the distribution of G143A mutations conferring fungicide resistance in Virginia populations of P. nodorum, and 3) characterize genetic diversity of P. nodorum populations in Virginia and assess influences of cultivars and environments on population structure and SNB severity. For Objective 1, QoI resistant isolates of P. nodorum were identified from Virginia wheat fields, and this was the first report of QoI resistant P. nodorum in the United States. The G143A substitution in the cytochrome b gene of P. nodorum was associated with reduced QoI sensitivity, and in Objective 2, a state-wide, two-year survey of P. nodorum populations in Virginia determined that the G143A mutation was widespread in the state and among sampled fields the frequency ranged from 5-32% (mean = 19%). For Objective 3, P. nodorum was isolated from five different wheat cultivars across seven locations over two years in Virginia. SNB severity varied by cultivar but greater differences in disease severity were observed among locations and years suggesting environment plays an important role in SNB development. Among the necrotrophic effector (NE) genes examined, SnTox1 was predominant followed by SnTox3, and frequencies of NE genes did not vary by cultivar or location. P. nodorum populations in Virginia had high genetic diversity, but there was no genetic subdivision among locations or wheat cultivars from which individuals were isolated. Results also indicated that the P. nodorum population in Virginia undergoes a mixed mode of reproduction, but sexual reproduction made the greatest contribution to population structure. Overall, this work provides insights into the population biology of P. nodorum in Virginia and information on variability in fungicide sensitivity and cultivar susceptibility to SNB that has implications for the current and future efficacy of fungicides and host resistance for management of SNB. / Doctor of Philosophy / Wheat (Triticum aestivum L.) is one of the major cereal crops grown worldwide for food, feed, and other products. However, yields of this crop are often limited by fungal diseases including Stagonospora nodorum blotch (SNB) caused by Parastagonospora nodorum. Increasing trends of severity and incidence of SNB may be due to reduced sensitivity of P. nodorum to fungicides or increased virulence of P. nodorum populations on commonly grown cultivars. Fungicides such as quinone outside inhibitors (QoIs) are one of the major classes of fungicides used for disease control and G143A substitution is the most common point mutation associated with complete resistance to QoIs. Therefore, the overall goal of this research was to better understand genotypic and phenotypic variation in Virginia populations of P. nodorum in the context of fungicide sensitivity and susceptibility of wheat cultivars to SNB. The specific objectives were to 1) determine the occurrence of quinone outside inhibitor (QoI) fungicide resistance in Virginia populations of P. nodorum infecting wheat, 2) quantify the distribution of G143A mutations conferring QoI fungicide resistance in Virginia populations of P. nodorum, and 3) characterize genetic diversity of P. nodorum populations in Virginia and assess influences of cultivars and environments on population structure and SNB severity. Results from this research indicate that QoI fungicide resistance occurs in Virginia populations of P. nodorum due to a target site mutation (G143A substitution in the cytochrome b gene), and this mutation is widespread and relatively common in Virginia wheat fields. Based on a multi-year multilocation study, P. nodorum populations were genetically diverse, but there was no genetic subdivision among locations or wheat cultivars. SNB severity varied by location and cultivar, but disease severity was greatest at site-years with moderate springtime temperatures and high rainfall. Overall, this work contributes to a better understanding of P. nodorum populations including the current efficacy of fungicides and host resistance for management of SNB in the region.
4

FUNGICIDE TIMING, RESISTANCE MONITORING, AND PHYTOPATHOMETRY FOR FIELD CROP DISEASES IN INDIANA

Kaitlin G Waibel (15353782) 26 April 2023 (has links)
<p>  </p> <p>Protecting crops from disease requires continuous research because plant pathogen incidence, geographical range, and pathogenicity, are constantly shifting variables as agronomic practices and climate continue to evolve. The objectives of this research are to i.) evaluate field-scale fungicide timing programs for corn (<em>Zea mays L.</em>) diseases at multiple locations in Indiana; ii.) evaluate field-scale fungicide timing programs for soybean (<em>Glycine Max</em> (L.) Merr.) diseases at multiple locations in Indiana; iii.) continue to identify, document, and confirm the distribution of populations of the soybean frogeye leaf spot pathogen (<em>Cercospora sojina)</em> that contain the G143A mutation conferring resistance to quinone outside inhibitor (QoI) fungicides in Indiana; and iv.) assess the incidence, severity, and prevalence of tar spot (<em>Phyllachora maydis</em>) in Indiana. For the first and second objectives, field scale trials were established at three locations in Indiana from 2019 to 2022. No application timings at any location provided significant yield protection for corn or soybeans. To achieve the third objective, 165 isolates of <em>C. Sojina </em>were tested. In total, 24 out of the 32 counties sampled in 2021 and 2022 were documented with QoI-resistance. The fourth objective was accomplished by surveying Indiana counties for incidence and severity of tar spot. As of 2022, 86 out of 92 Indiana counties have been confirmed for the presence of tar spot.</p>

Page generated in 0.0882 seconds