• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 33
  • 5
  • Tagged with
  • 91
  • 91
  • 56
  • 48
  • 26
  • 25
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Récupération de l'énergie des solides massifs : cas d'acier de la coulée continue / Energy recovery from solids-case of steel slab after the continuous casting

Sayah, Haytham 05 October 2012 (has links)
La production d'acier fait partie des productions mondiales les plus consommatrices d'énergie. L'état de l'art montre que les brames, après la coulée continue, sont refroidies à l'air libre de 900 °C à la température ambiante. Durant ce processus 540 MJ/tonne d'acier sont perdues. Cette thèse a permis de définir une méthode et un équipement aptes à extraire de l'énergie à haute valeur exergétique lors du refroidissement.Deux voies de récupérations sont présentées. La première voie est via un cycle thermodynamique direct. Le cycle choisi pour cette voie est le cycle de Hirn avec resurchauffe ayant un rendement global de 30 % produisant 10 MW de puissance électrique. La deuxième voie est via un système indirect utilisant le SYLTHERM 800 comme fluide caloporteur entre la brame et un cycle ORC, fonctionnant avec du R-245fa et avec un rendement globale de 17,6 %. Dans les deux configurations, les transferts thermiques choisis sont la conduction et le rayonnementUn banc d'essais, dimensionné utilisant la technique de similitude, a permis d'étudier les transferts thermiques intervenant dans l'équipement de récupération. La variation de la résistance de contact à l'interface brame-sole est étudiée en fonction de la température ainsi que le comportement thermique de l'échangeur de conduction. L'étude thermodynamique ainsi que l'étude thermique ont permis d'effectuer un pré-dimensionnement de l'équipement de récupération pour les deux configurations étudiées.Un modèle numérique utilisant la méthode des réseaux de composants est élaboré. Ce modèle est capable de reproduire les mêmes phénomènes physiques que ceux intervenant dans l'équipement de récupération / Steel production industry is one of the most energy consuming sectors. The state-of-the-art indicates that steel slabs leaving the continuous casting process are cooled without energy recovery by radiating to the atmosphere and convection. Not only a large amount of energy is wasted but this type of cooling is time consuming. During the cooling process of steel slabs from an initial temperature of approximately 900°C to outdoor air temperature, 580 MJ per ton of steel are wasted. This study has defined a method and an equipment capable of extracting the energy at high exergy value during cooling.The energy could be recovered using two different systems. The first is a direct thermodynamic generation cycle. The selected direct cycle is the Hirn cycle with intermediate reheating having an overall efficiency of 30 % and producing about 10 MW electric power. The second is an indirect system using SYLTHERM 800 as an intermediate heat transfer fluid between the metal slabs and an organic Rankine cycle using R-245fa as a working fluid with 17.6 % efficiency and producing about 6 MW. In both systems the dominant heat transfers to recover heat are conduction for the floor heat exchanger and radiation for the ceiling heat exchanger.A test bench was mounted, using a similitude technique, to study heat transfers. The variation of the thermal contact resistance as a function of the contact temperature is studied as well as the thermal behaviour of the conduction heat exchanger. The thermodynamic and the thermal studies led to a preliminary design of the recovery equipment.A numerical model is developed using the component interaction network. This model can reproduce the same physical phenomena taking place in the recovery equipment.
22

Contribution to modelling of magnetoelectric composites for energy harvesting / Composition à la modélisation des composites magnétoélectriques pour la récupération d'énergie

Yang, Gang 05 December 2016 (has links)
Dans le domaine de l'Internet des Objets (IOT) les matériaux magnétoélectriques composites (MEC) trouvent leurs potentiels utilités dans la récupération d'énergie de microsystèmes autonomes. L'aspect géométrique des matériaux MEC se traduit par l'assemblage de matériaux piézoélectriques et magnétostrictifs sous formes laminaires ou sous formes de mixture par grains. Dans tous les cas ces matériaux possèdent, sous certaines conditions, des coefficients magnétoélectriques qui peuvent fournir des tensions et des puissantes suffisantes pour alimenter des microsystèmes autonomes. Mes travaux de recherche ont porté essentiellement sur une contribution à la modélisation de ces matériaux MEC à l'aide de méthodes analytiques et d'un code numérique basé sur la méthode des éléments finis (MEF) en 2D. Une méthode basée sur la combinaison du tenseur de Maxwell avec le model de Jiles-Atherton modifié a été proposée pour inclure dans la MEF la non-linéarité des couches magnétostrictives. Une étude sur les performances des structures multicouches a été réalisée afin de déterminer la configuration optimale pour les matériaux élaborés à base de couches minces. Une potentielle application dans le domaine biomédical est finalement présentée afin de prouver l'efficience d'un transducteur d'énergie MEC dans ce domaine. Une série de mesures sur un composite bilame est présentée à la fin afin de montrer le plein accord avec la partie modélisation réalisée. / Currently, the "Internet of Everything" (IoE) technologies have attracted significant researchers in the international scientific community. The IoE is based on the idea that identifiable objects are located and controlled via the Internet. To achieve this goal, it is necessary to design embedded systems in millimeter/micrometer scales composed of wireless sensor nodes while overcoming a major drawback of the excessive use of batteries which are limited in lifetime and yield pollutants. The problem calls for the supply of green energy harvesting for wireless sensors. To utilize mechanical vibrations and electromagnetic energy more efficiently, it would be necessary to get simultaneously both energies using materials sensitive to the electromagnetic field and the mechanical vibration such as magnetoelectric materials (ME) that combine the magnetostrictive and piezoelectric effects. Experimental results of ME coefficients from the fabricated ME composites have confirmed the possibility to obtain a few of V/(cm∙Oe) in no-resonant regime and few tens of V/(cm∙Oe) in resonant regime. In case of classical laminate bulk material (Terfenol-D/PZT/Terfenol-D), the delivered powers into optimal impedance are in the order of mW/ cm3. Thus in this context the research work in this thesis focuses on the establishment and assessment of the modelling approaches. The contribution includes analytical numerical methods and a 2D multiphysics finite element method to estimate the performance of the ME materials according to different polarizations and parameters.
23

Energy-aware transceiver for energy harvesting wireless sensor networks / Système de transmission radiofréquence adaptatif en performance et en consommation pour réseaux de capteurs autonomes en énergie

Didioui, Amine 13 October 2014 (has links)
Les progrès technologiques accomplis durant ces dernières décennies dans les domaines des microsystèmes et des radiocommunications nous permettent de réaliser des composants communicants miniaturisés à faible coût afin de constituer des réseaux de capteurs sans fil. Typiquement, chacun de ces composants intègre une ou plusieurs unités de mesures (capteur), une unité de traitement de données, une unité de communication radio et une batterie. De ce fait, un nouveau domaine de recherche s’est créé pour étudier le déploiement de ces réseaux afin d’offrir des solutions de surveillance et de contrôle à distance, notamment dans des environnements complexes ou inaccessibles. Les domaines d’application de ces capteurs sont très variés, allant de la domotique au militaire en passant par le médical et les infrastructures civiles. Souvent, ces applications impliquent des contraintes sévères en terme d’autonomie qui idéalement devrait atteindre plusieurs dizaines d’années. Pour atteindre cet objectif, il est à la fois nécessaire de réduire la consommation énergétique du nœud capteur et de trouver d’autres solutions d’alimentation en énergie pour le nœud. Pour adresser ce deuxième point, la récupération d’énergie à partir de l’environnement (solaire, vibratoire, thermique, etc.) semble représenter une solution idéale pour alimenter un nœud capteur, bien que celui-ci doive s’adapter aux faibles quantités d’énergie récupérées par ces systèmes, ainsi qu’à leurs variations et intermittences. Ces travaux de thèse s’intéressent donc à la problématique de la simulation et de la réduction de la consommation des nœuds de capteurs sans-fil et autonomes en énergie. Dans un premier temps, nous avons développé la plateforme HarvWSNet, un environnement de co-simulation alliant le simulateur de réseaux WSNet et Matlab permettant ainsi la modélisation précise et la simulation hétérogène des protocoles de communication (typiquement à événements discrets) et des systèmes de récupération d’énergie (qui possèdent typiquement un comportement à temps continu). Nous avons démontré que cette plateforme permet de réaliser très rapidement des études de pré-prototypage de scénarios applicatifs de déploiement et ainsi réduire le temps de conception de ces nouvelles technologies. Grâce à la modélisation précise des éléments du système de récupération d’énergie (batterie, supercapacité, etc.) permise par cette plateforme, nous avons étudié et évalué la durée de vie de déploiements à large échelle de réseaux de capteurs alimentés par des systèmes de récupération d’énergie (solaire et éolien). La deuxième contribution de cette thèse concerne l’étude et l’implémentation de stratégies de reconfiguration dans l’interface de communication radio, qui est souvent la principale source de consommation d’énergie d’un capteur, afin de permettre au nœud et/ou au réseau de minimiser sa consommation lorsque le bilan de liaison RF est favorable. A cette fin, nous avons proposé une approche originale grâce au développement d’un simulateur de réseau dédié, EnvAdapt (basé sur WSNet). Dans cette nouvelle plateforme, des modèles de consommation des différents blocs du transceiver radio et des algorithmes de reconfiguration ont été implémentés afin d’étudier l’impact de la reconfiguration des performances de la radio sur la qualité de service et l’autonomie d’un réseau de capteurs. / Technological advances achieved over the past decade in the fields of microsystems and wireless communications have enabled the development of small size and low cost sensor nodes equipped with wireless communication capabilities able to establish a wireless sensor network (WSN). Each sensor node is typically equipped with one or several sensing unit, a data processing unit, a wireless communication interface and a battery. The challenges raised by WSNs has lead to the emergence of a new research domain which focuses on the study and deployment of such a networks in order to offer the required remote monitoring and control solutions for complex and unreachable environment. WSNs have found application in a wide range of different domains, including home and structural health monitoring, military surveillance, and biomedical health monitoring. These applications usually impose stringent constraints on the WSN lifetime which is expected to last several years. To reach this objective, it is necessary to reduce the overall energy consumption of the sensor node and to find an additional source of energy as well. To address the last point, energy harvesting from the environment seems to be a an efficient approach to sustain WSNs operations. However, energy harvesting devices, which must also be small, are usually unable to ensure a continuous operation of sensor nodes. Thus, it is necessary to adapt the WSN consumption and activity to the low and unpredictable energy scavenged. The work presented in this thesis focuses on the issue of simulation and power consumption of autonomous sensor nodes. We have first developed, HarvWSNet, a co-simulation framework combining WSNet and Matlab that provides adequate tools to accurately simulate heterogenous protocols (based on discrete-time events) and energy harvesting systems (based on continuous-time events). We have demonstrated that HarvWSNet allows a rapid evaluation of energy-harvesting WSNs deployment scenarios that may accelerate the time-to-market for these systems. Thanks to the accurate energy models (battery, supercapacitor, etc.) implemented in this platform, we have studied and evaluated a large scale deployment of solar and wind energy-harvesting WSNs. Our second contribution focuses on the implementation of energy-aware reconfiguration strategies in the radio transceiver which is usually considered as the most energy hungry component in a sensor node. These strategies are intended to reduce the excessive power consumption of the radio transceiver when the channel conditions are favorable. To this end, we have a new simulation framework called EnvAdapt (based also on WSNet) dedicated to the evaluation of reconfigurable radio transceivers for WSNs. In EnvAdapt, we have implemented the required radio transceiver behavioral and power consumption models that allows the evaluation of the impact of radio transceiver reconfiguration on the communication performance and lifetime of WSNs.
24

Circuits de récupération d’énergie très basse puissance pour transducteurs à capacité variable / Very Low-power Interface Circuits for Variable Capacitance-based Energy Harvesters

Wei, Jie 28 September 2017 (has links)
La récupération d'énergie mécanique de vibration à l’aide de transducteurs à capacité variable mène à l’étude de systèmes non linéaires complexes, mais présente des perspectives applicatives très prometteuses. Notre travail a porté sur l’étude d’une nouvelle famille de circuits d'interface pour transducteurs capacitifs. Entre autres avantages, ces circuits sont réalisables avec des rendements élevés à très basse puissance, typiquement dès quelques dizaines de nano-watts de puissance moyenne, ce qui les distingue des solutions présentées dans de l’état de l’art. De plus, Les circuits étudiés dans cette thèse ne contiennent aucun composant magnétique, ce qui constitue un atout considérable en termes de miniaturisation et d’intégration et permet eu outre la compatibilité avec l’imagerie par résonance magnétique. Les différentes structures qui constituent la famille de circuits proposés permettent de répondre à différentes contraintes imposées par le transducteur capacitif, en particulier le rapport des capacités maximale et minimale Cmax/Cmin. A partir d’une tension de sortie donnée, la tension appliquée sur le transducteur capacitif peut être modifiée en utilisant différents circuits ou en utilisant un circuit unique dont la topologie est modifiée à l’aide d’un interrupteur électronique. Les modèles théoriques développés prennent en compte le couplage électromécanique du transducteur de manière à décrire le comportement global des systèmes étudiés. Les circuits étudiés ont été validés expérimentalement avec deux transducteurs capacitifs de structure différente. En pratique, le rendement de ces circuits est proche de 80% pour des puissances converties aussi basses que la centaine de nano watts. / The mechanic vibration energy harvesting using variable capacitance transducers leads to the study of complex nonlinear systems but has very promising application perspectives. Our work focused on the study of a new family of interface circuits for capacitive transducers. Among all the advantages, these circuits are achievable with high efficiencies at very low power, typically a few tens of nanowatts average power, which distinguishes them from the solutions presented in the state of the art. Moreover, the circuits studied in this thesis do not contain any magnetic components, which is a considerable asset in terms of miniaturization and integration and also allows compatibility with magnetic resonance imaging. The various structures which constitute the family of circuits proposed make it possible to satisfy various constraints imposed by the capacitive transducer, in particular, the ratio of the maximum and minimum capacities Cmax / Cmin. For a given output voltage, the voltage applied to the capacitive transducer can be varied by using different circuits or by using a single circuit whose topology is modified by the operation of an electronic switch. In order to describe the overall behavior of the studied systems, the electromechanical coupling of the transducer is taken into account in the developed theoretical models. The studied circuits have been validated experimentally with two capacitive transducers of different structure. In practice, the output of these circuits is close to 80% for converted powers as low as the hundred nanowatts.
25

Récupérateur d'énergie vibratoire MEMS électrostatique à large bande pour applications biomédicales / Electrostatic MEMS vibrational energy harvester with large bandwidth for biomedical applications

Vysotskyi, Bogdan 24 September 2018 (has links)
Ce travail de recherche porte sur le développement et la mise au point d'un récupérateur d'énergie vibratoire MEMS à transduction capacitive dédié aux applications biomédicales et plus particulièrement aux stimulateurs cardiaques sans sondes autonomes. Cette application impose une miniaturisation poussée (volume inférieur à 1 cm³), une puissance de sortie dans la gamme allant de 1 à 10 µW et une compatibilité vis-à-vis des systèmes d'Imagerie à Résonance Magnétique (IRM). Ces contraintes ainsi que l'effet de la gravité ont été pris en compte sur tout le flot de conception afin d'obtenir un dispositif innovant en technologie MEMS silicium capable de fournir une puissance de sortie suffisante quelle que soit son orientation une fois implanté. Afin de convertir efficacement les battements cardiaques ayant un spectre étendu (de 1 à 50 Hz) pour une amplitude d'accélération faible (inférieure à 1 g), le système emploie des bras de suspension ayant une raideur non-linéaire ce qui permet d'étendre notablement la bande passante effective du système. Cette non-linéarité est ici induite de manière originale en faisant en sorte que la forme initiale des bras de suspension soit une combinaison linéaire des modes de déformée propre d'une poutre doublement encastrée. Un soin particulier a été apporté afin de modéliser ceci dans le but de prédire la réponse mécanique du système quels que soient les stimuli imposés. Afin de réaliser les différents dispositifs de test, une technologie MEMS de type SOG (Silicon-On-Glass) a été développée. Cette technologie permet d'obtenir des structures en silicium monocristallin avec un fort rapport d'aspect tout en limitant le budget thermique et se montre donc compatible avec une éventuelle industrialisation. Ceci a été prouvé via la réalisation de multiples véhicules de test qui se sont montrés totalement fonctionnels. Ainsi la pertinence des modèles théoriques permettant de prédire le comportement non-linéaire des ressorts employés a été prouvée de manière expérimentale. De même, les récupérateurs d'énergie réalisés ont été testés en régime harmonique mais également via des stimuli cardiaques et ont montré une large bande passante avec une puissance de sortie équivalente à celle donnée dans l'état de l'art et ce, quelle que soit leur orientation par rapport à la gravité. / Present work addresses question of MEMS capacitive vibrational energy harvesting for biomedical applications, and notably for powering an autonomous leadless pacemaker system. Such an application imposes several critical requirements upon the energy harvesting system, notably the sufficient miniaturization (<1cm³), power output in range of 1-10 µW, compatibility with Magnetic Resonant Imaging (MRI). This work addresses a problematic of MEMS energy harvester design, simulation, fabrication and characterization fulfilling such a requirement. Moreover, a gravity effect is studied and taken into account in the conception of the device to ensure the power output at various orientations of the harvester. To attain a heartbeat frequencies (1-50 Hz) and acceleration amplitudes (<1g), the use of nonlinear springs is proposed. A nonlinear stiffness is implemented in original way of introducing a natural bending mode shapes in the initial beam form. A mechanical description of bending mode coupling along with its impact on a reaction force of the suspension springs is presented. An innovative clean room technology based on silicon-on-glass (SOG) wafers is developed for the fabrication of the innovative energy harvesters with high width-to-depth aspect ratio. A straightforward and rapid low-temperature process with the possibility of future industrialization is validated by multiple experimental realizations of miniaturized MEMS energy harvesters. Fabricated microsystems are tested mechanically and electrically. Proposed theoretical model of the curved beam is validated with reactive force measurements of the MEMS springs. Energy harvesting experiments are performed for both harmonic and heartbeat mechanical excitations, which demonstrate the large bandwidth in low frequencies domain and a sufficiently large state-of-the-art power output for envisaged application under different orientations with respect to the gravity.
26

Stockage adaptatif pour noeud de capteur sans fil autonome et sans batterie / Adaptive storage for autonomous and battery-free wireless sensor node

El Mahboubi, Firdaous 17 December 2018 (has links)
L'autonomie énergétique est un verrou majeur au déploiement massif de réseau de capteurs sans fil dans nombreuses applications. La récupération d'énergie et son stockage constituent une voie pour améliorer cette autonomie. Dans certaines applications en environnement sévère ou nécessitant des durées de vie élevées, l'utilisation de batteries pour le stockage est prohibée. On a alors recours à du stockage sur supercondensateurs. Ce type de stockage présente des inconvénients nécessitant un compromis entre 3 facteurs : la charge rapide des supercondensateurs (capacité faible), l'énergie maximale stockée (capacité forte) et la maximisation de l'usage de l'énergie stockée (tension résiduelle basse). Pour répondre à ces critères apparemment contradictoires, nous avons proposé trois architectures de stockage auto-adaptatif. La première est composée d'une matrice de quatre supercondensateurs identiques, interconnectés par des interrupteurs, dont la capacité équivalente s'adapte à l'énergie stockée. Les deuxième et troisième architectures sont constituées de deux supercondensateurs, l'une de capacité faible et l'autre de capacité grande, la différence entre les deux architectures étant liée au nombre et type d'interrupteurs utilisés. Les architectures de stockage auto-adaptatif que nous avons proposées incluent une circuiterie de contrôle appropriée autoalimentée et permettant de faire varier la capacité apparente du dispositif. De plus, chaque architecture permet un démarrage à froid avec des supercondensateurs complètement vides. Ces trois architectures ont d'abord été optimisées en simulation puis validées expérimentalement en composants discrets. Finalement, nous avons implémenté l'architecture de stockage auto-adaptatif à deux supercondensateurs au sein d'un système de mesure sans fil complet utilisant une source de récupération d'énergie et son électronique associée pour son alimentation et montré la pertinence de cette approche de stockage reconfigurable. En termes d'efficacité d'usage de l'énergie, elles permettent d'atteindre jusqu'à 94,7% en composants discrets, valeur qui pourrait être encore améliorée en version intégrée sur silicium à la fois pour la circuiterie de contrôle et les supercondensateurs. / Energy autonomy is a major challenge in the massive deployment of wireless sensor networks in numerous applications. Energy harvesting and storage can serve as solutions to the autonomy issues. However, the harsh environment of certain applications requires a long lifetime since the use of batteries for storage is prohibited. We then resort to storage on ultra-capacitors. This type of storage has disadvantages that require a compromise between 3 factors: the fast charge of ultra-capacitors (low capacity), the maximum energy storage (strong capacity), and the maximization of stored energy utilization (low residual voltage). To meet these seemingly contradictory criteria, we propose three self-adaptive storage architectures. The first consists of a matrix of four identical ultra-capacitors, interconnected by switches, whose equivalent capacity adapts to the stored energy. The second and third architectures consist of two ultra-capacitors, one of low capacity and the other of large capacity, the difference between the two architectures being related to the number and type of switches used. The self-adaptive storage architectures that we propose include a suitable self-powered control circuitry to vary the apparent capacity of the device. In addition, each architecture allows a cold start with completely empty ultra-capacitors. These three architectures were first optimized through simulation, and then validated experimentally with discrete components. Finally, we implemented the self-adaptive storage architecture with two ultra-capacitors in a completely wireless measurement system, using an energy harvesting source and its associated electronics for its power supply, and demonstrated the relevance of this approach of reconfigurable storage. In conclusion, we deduce that the topologies can reach an efficiency of energy usage of up to 94.7% by employing discrete components, a value that could be further improved through the exploitation of a silicon integrated version for both the control circuitry and the ultra-capacitors.
27

Irradiation and nanostructuration of piezoelectric polymers for nano-sensoring and harvesting energy applications. / Irradiation et nanostructuration des polymères piézo-électrique pour des applications nano-capteurs et récupération d'énergie

Melilli, Giuseppe 26 October 2017 (has links)
La polyvalence de la technique de track-etching a permis d’étudier plus avant l’effet piezoélectrique direct et indirect d’un film polarisé en poly(fluorure de vinylidène) PVDF en créant des membranes nanostructurées hybrides de nanofils de nickel (Ni NWs)/PVDF. Les propriétés magnétiques du nanofil de nickel, telle que la magnétorésistance anisotrope (AMR), ont été exploitées afin d’étudier la réponse de l’aimantation à la déformation mécanique de la matrice PVDF. En particulier, les déformations ont été induites soit par contrainte thermo-mécanique, soit par contrainte électromécanique (effet piezoélectrique indirect). La sensibilité d’un nanofil unique a permis de déterminer l’amplitude et la direction de la contrainte mécanique exercée à l’échelle nanométrique par la matrice PVDF. La résistance exceptionnelle de la réponse piezoélectrique directe du film PVDF polarisé à l’irradiation, telle que l’irradiation aux ions-lourds accélérés et aux électrons (domaine de doses < 100kGy) a été observée. Mis à part la conservation de la réponse piezoélectrique, les défauts engendrés par l’irradiation dans ce domaine de dose (scissions de chaines, augmentation de phase crystalline, réticulations) ont eu un impact significatif sur la structure du matériau polymère. L’ensemble de ces défauts, les uns prépondérants en-dessous de la dose-gel ( 10kGy), les autres au-dessus, forme une compensation d’effets antagonistes qui mènent à une réponse piezoélectrique globalement inchangée. Stimulé par la grande résistance du PVDF à l’irradiation en termes de réponse piezoélectrique, l’idée a été d’exploiter, en vue d’une application dans la récupération d’énergie, le réseau de nanofils de nickel inclus dans la membrane en PVDF polarisé pour étudier l’influence des nanofils de nickel sur la l’efficacité piezoélectrique. La présence du réseau de nanofils de nickel mène à un accroissement non négligeable de l’efficacité piezoélectrique. Reliée à la présence des nanofils, une augmentation de la permittivité diélectrique dans le PVDF nanostructuré a également été enregistrée. Une polarisation interfaciale entre les nanofils de nickel et la matrice PVDF pourrait expliquer cette valeur accrue par rapport au PVDF nanoporeux sans nanofils. / The versatility of the track-etching technique has allowed to investigate deeper the direct and inverse piezoelectric effect of a polarized Poly(vinylidene fluoride) (PVDF) film in building nanostructured hybrid Nickel nanowires (Ni NWs)/PVDF membrane. The magnetic properties of the Ni NW, such as anisotropic magneto resistance (AMR), are exploited to investigate the response of the magnetization to a mechanical deformation of the PVDF matrix. In particular, the deformations were induced either by thermo-mechanical or an electro-mechanical (inverse piezoelectric effect) stress. The sensitivity of the single NW has allowed to determine the amplitude and direction of a mechanical stress exerted at the nano-scale by the PVDF matrix. The outstanding resistance of the direct piezoelectric response of polarized PVDF film to radiation, such as SHI and e-beam, (doses range < 100kGy) was reported. Beyond the conservation of the piezoelectric response, in this dose range, irradiation defects (chain scissions, increase of the crystalline -phase, crosslinking) had a significative impact on the polymer material. All these defects, ones predominant above the gel dose (herein 10 kGy), and the other ones below, compensate their antagonistic effects towards the globally unchanged piezoelectric responses. Motivated by the high radiation resistance of the PVDF in terms of piezoelectric response, the idea was to exploit Ni NWs array embedded in the polarized PVDF membrane to study the influence of the Ni NWs on the piezoelectric response in view of harvesting energy application. The presence of the Ni NWs array leads a non-negligible increase of the piezoelectric efficiency. Related to the presence of the NWs, an increase of the dielectric permittivity in the nanostructured PVDF was also reported. An interfacial polarization between the Ni NWs and the PVDF matrix could explain the higher efficiency value respect to nanoporous PVDF, without NWs.
28

Contribution to the study of waste heat recovery systems on commercial truck diesel engines / Contribution à l'étude de systèmes de récupération d'énergie sur moteur Diesel de véhicules industriels

Espinosa, Nicolas 24 October 2011 (has links)
L'augmentation du prix du pétrole ainsi qu'une possible future réglementation des émissions de CO2 encourage les fabricants de véhicules industriels à trouver de nouvelles solutions pour améliorer encore la performance de la chaine cinématique. Dans ce cadre, deux solutions de récupérations d'énergie prometteuses sont très souvent rapportées dans la littérature: le système de récupération d'énergie par cycle de Rankine et le générateur thermoélectrique. Après un rappel des conditions limites du fonctionnement d'un camion long routier, cette thèse démontre tout d’abord la modélisation 0-D et 1-D (logiciels commerciaux utilisés) de ces deux systèmes de récupération d’énergie. Pour le générateur thermoélectrique, des études paramétriques (hauteur de jambe thermoélectrique, prix, puissance électrique produite) sont effectuées se basant principalement sur l'utilisation de deux matériaux prometteurs. Une conception du système Rankine est présentée et modélisée avec le solveur 1-D. Des validations partielles sont réalisées sur les composants (turbine). Ce modèle a ensuite permis d'étudier les transitoires du système ainsi que la charge en réfrigérant et un système de contrôle possible. Cette étude montre que le générateur thermoélectrique n’est pas encore mature pour son utilisation dans un camion long routier. Le système Rankine doit quant à lui être testé sur un camion prototype pour pouvoir véritablement estimer son potentiel final / Fuel price increase as well as future fuel consumption regulations lead truck manufacturers to further enhance the current powertrain. In such a context, two waste heat recovery technologies appear as promising: the Rankine system as well as the thermoelectric generator. After a reminding of truck boundary conditions, this thesis work defines 0-D and 1-D modeling (commercial tool used) for both systems.For the thermoelectric generator , parametric 1-D studies are done on the integration/design (number of thermoelements, price, electrical power) of a thermoelecric generator upstream the existing engine exhaust gas recirculation cooler. Main studies are done with thermoelectric materials but other materials are also considered. A Rankine system design is presented and modeled under a 1-D solver. Preliminary validations are presented. Transient aspects are evaluated to better understand the behavior of the system and its bottlenecks. The amount of refrigerant in the circuit and the control schematic are also addressed.From these studies, it appears that the thermoelectric generator technology is not yet mature for a long haul truck due to the low performance of thermoelectric materials. The Rankine system technology should handle a complete truck prototype testing to estimate its potential
29

Etude et réalisation d'un récupérateur d'énergie vibratoire par transduction électrostatique en technologie MEMS silicium / Elaboration of a capacitive transducer for vibration-to-electricity power conversion

Guillemet, Raphaël 02 October 2012 (has links)
Une solution pertinente afin d'alimenter des capteurs isolés consiste à récupérer l'énergie disponible dans leur environnement immédiat. Parmi les sources d'énergie envisageables, notre choix s'est porté sur les vibrations mécaniques ambiantes. Notre contribution porte sur l'étude et la réalisation, par un procédé de fabrication collective, d'un transducteur électrostatique sans électrets en technologie MEMS Silicium. Nous proposons une étude analytique permettant d'optimiser l'efficacité du générateur électrostatique, tout en considérant une limite sur la tension maximale aux bornes du transducteur afin de ne pas endommager le circuit de conditionnement. Le design proposé prend également en compte d'éventuelles variations de l'amplitude des vibrations externes. Le dispositif a été fabriqué au sein de ESIEE Paris et présente un volume total de moins de 100 mm3.Les tests expérimentaux ont montré un comportement fortement non-linéaire de la structure. Nous avons obtenu une conversion d'énergie mécanique en énergie électrique correspondant à une puissance maximale de 2.3 μW à 260 Hz, pour une accélération de 1 g et à une pression de 0.15 Torr, lorsque le système est pré-chargé avec une tension de 10 V. Une fois implémenté dans un circuit de pompe de charge et pour les mêmes conditions d'accélération et de pression, le système peut fonctionner en complète autonomie pendant plus de 500 secondes pendant lesquelles la puissance délivrée varie de 1.4 μW à 940 nW avec une tension de pré-charge de 10.6 V / A relevant solution to power isolated sensors is to harvest the energy available in their immediate environment. Among the possible sources of energy, our choice was made on ambient mechanical vibrations. We have designed and fabricated a silicon-based and batch-processed MEMS electrostatic transducer which does not use an electret. We present an analytical method to optimize the efficiency of the electrostatic generator, while a voltage limitation on the transducer's terminal is set to prevent any damage in the conditioning electronics. The proposed design also takes into account some possible variations in the amplitude of external vibration. The device was fabricated in ESIEE Paris and its volume is less than 100 mm3. The device was tested experimentally and exhibits a strong non-linear behavior. We obtained a conversion of mechanical energy into electrical energy corresponding to a power of 2.3 μW at 260 Hz, with an acceleration of 1 g and a pressure of 0.15 Torr, when the system is pre-charged with a voltage of10 V. When the device is implemented in a charge pump circuit and under the same parameters of acceleration and pressure, the system can operate in autonomous mode for more than 500 seconds during which the output power varies from 1.4 μW to 940 nW when the pre-charge voltage is 10.6 V
30

Optimisation des transferts d'énergie pour les systèmes connectés : application aux systèmes RFID communiquant en champ proche à très haut débit / Power transfer optimization for internet of things : application to near field RFID systems communicating at very high data rate

Couraud, Benoît 11 December 2017 (has links)
Dans le contexte de développement de produits sans-contact communiquant à très haut débit, dît systèmes VHBR (Very High Bit Rate), il s’avère que les cartes ou passeports VHBR, télé-alimentés à partir du lecteur qui communique avec eux, sont contraints de fonctionner avec une alimentation bien plus faible que les produits communiquant à des débits standards. Pour répondre à cette problématique de manque de puissance d’alimentation, il a été nécessaire de commencer par reprendre la théorie des lignes en l'orientant de manière à ce qu'elle permette de quantifier les transferts de puissance entre une source et une charge séparées par un média quelconque. Ensuite, ce nouveau moyen de quantification des transferts de puissance a été utilisé pour faire de l'aide à la conception des lecteurs VHBR. Ensuite, ce travail de recherche se concentre sur les cartes ou passeports VHBR. En effet, pour permettre à un tel système sans contact de fonctionner de manière télé-alimentée dans un environnement où la puissance disponible est réduite, il faut optimiser sa conception. Les solutions proposées ici consistent à déterminer la géométrie des antennes inductives qui optimisent la récupération d'énergie et le transfert de puissance vers la puce d'une carte VHBR. Ainsi, les travaux présentés dans ce manuscrit apportent des solutions globales à cette problématique de récupération d'énergie dans les objets connectés que sont les systèmes sans contact, en décrivant des méthodes de conception qui permettent d'une part de limiter les pertes de puissance au sein des lecteurs VHBR, et d'autre part d'optimiser la récupération d'énergie au sein des cartes VHBR. / The research work presented in this thesis provides solutions to help industrials to better design RFID readers and RFID tags that implement VHBR (Very High Bit Rate) protocols. Indeed, VHBR technology has a large drawback on the functionning of RFID tags as it lowers the energy available to supply the tag. First, this research work focuses on RFID reader design, and especially matching networks design. After describing a new way of assessing power transfer in Radio Frequency systems, it is shown that T matching networks as thoses proposed in ISO/IEC 10373-6 give the best results in terms of power transfer and signal integrity. Thus, a design method is proposed to correctly choose the three T matching network components that will optimize the power transfer and still meet the signal integrity requirements.Second, this thesis will focus on the design of RFID tags, by describing a new tag's antenna design method that optimize the energy harvested by the antenna and meanwhile reduce the power reflections between the antenna and the tag's chip. This design method is based on new explicit formula that compute a rectangular planar antenna inductance as a function of its geometric characteristics. This method showed very accurate results, and can become an interesting tool for industrials to speed up and optimize their antenna design procedure.Finally, a platform that measures RFID chip's impedance in every state of the chip has been designed, even during load modulation communication. The accuracy of this tool and its importance in order to achieve a good antenna design confer it a great usefulness.

Page generated in 0.0913 seconds