21 |
Boosting hierarchique et construction de filtresLaBarre, Marc-Olivier January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
22 |
Nanoparticules et réseaux de neurones artificiels : de la préparation à la modélisationRizkalla, Névine January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
23 |
Contribution à la mise au point d'un système mucoadhésif thermoréversible pour une libération topique contrôlée d'un médicament modèleGouda, Noha Mamdouh Zaky-Eldine January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
24 |
Système de vidéosurveillance et de monitoringDahmane, Mohamed January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
25 |
Réseaux de neurones et fonction respiratoire : mécanismes sensorimoteurs à la base du coupage locomotion-respirationGiraudin, Aurore 12 December 2008 (has links)
La respiration est une activité motrice autonome rythmique au cours de laquelle de nombreux muscles se contractent de manière coordonnée afin de produire des mouvements ventilatoires adaptés aux contraintes environnementales et aux exigences de l'organisme. Cette fonction vitale doit être fiable et adaptable à très court terme, c’est pourquoi elle est influencée, entre autres, par un grand nombre d’activités motrices. Par exemple, lors d’exercices physiques, le rythme respiratoire peut se coupler au rythme locomoteur. Les objectifs de ce travail doctoral sont centrés sur l’exploration des mécanismes neurogènes à la base du couplage entre ces deux fonctions motrices chez le rat nouveau-né. Pour une grande partie, cette étude a été réalisée sur préparation isolée in vitro de tronc cérébral-moelle épinière de rat nouveau-né (0 à 3 jours), ce modèle permettant de conserver dans leur intégrité les centres responsables des rythmes respiratoire et locomoteur. Compte tenu de l’accessibilité directe aux réseaux neuronaux, les mécanismes de couplage et d'entraînement respiratoire ont été abordés par des approches combinées électrophysiologique, neuroanatomique, pharmacologique et lésionnelle. Dans ce contexte, un des principaux résultats de ce travail doctoral est le rôle crucial joué par les informations sensorielles en provenance des membres antérieurs et postérieurs dans l'entraînement respiratoire observé lors de séquences locomotrices. Ainsi, les afférences proprioceptives spinales capables de réinitialiser et d'entraîner l’activité des centres respiratoires bulbaires via un relais pontique, établissent également des connexions sur l’ensemble des populations de motoneurones spinaux respiratoires phréniques, intercostaux et abdominaux. / Respiration is an autonomous rhythmic motor activity that requires the coordinated contractions of diverse muscles to produce ventilatory movements adapted to organismal needs. This crucial physiological function must be reliable and adaptable on a short-term basis, and requires coordianted movements with various other motor activities. For instance, respiratory rhythmicity becomes coupled to locomotion during physical exercise. My doctoral work aimed to explore the neurogenic mechanisms underlying the interactions between these two motor functions in the neonatal rat. This work was mainly conducted on isolated in vitro brain stem-spinal cord preparations of newborn rats (0-3 days), an experimental model that allows the maintenance of the still functional respiratory and locomotor CPGs in vitro. Due to the easy access to the neuronal networks in these preparations, locomotor-respiratory coupling and respiratory entrainment mechanisms were investigated by combined electrophysiological, neuroanatomical, pharmacological and lesional approaches. A major finding was the crucial played by sensory information from fore- and hindlimb in respiratory entrainment induced by locomotor rythmicity. Spinal sensory afferents can reset and entrain the activity of the medullary respiratory centres via a pontine relay, as well as making direct connections with the various spinal respiratory motoneuron (phrenic, intercostal and abdominal) populations.
|
26 |
Prévision des crues éclair par réseaux de neurones : généralisation aux bassins non jaugés / Flash floods forecasting using neural networks : generalizing to ungauged basinsArtigue, Guillaume 03 December 2012 (has links)
Dans les régions méditerranéennes françaises, des épisodes pluvieux diluviens se produisent régulièrement et provoquent des crues très rapides et volumineuses que l'on appelle crues éclair. Elles font fréquemment de nombreuses victimes et peuvent, sur un seul évènement, coûter plus d'un milliard d'euros. Face à cette problématique, les pouvoirs publics mettent en place des parades parmi lesquelles la prévision hydrologique tient une place essentielle.C'est dans ce contexte que le projet BVNE (Bassin Versant Numérique Expérimental) a été initié par le SCHAPI (Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations) dans le but d'améliorer la prévision des crues rapides. Ces travaux s'inscrivent dans le cadre de ce projet et ont trois objectifs principaux : réaliser des prévisions sur des bassins capables de ces réactions qu'ils soient correctement jaugés, mal jaugés ou non jaugés.La zone d'étude choisie, le massif des Cévennes, concentre la majorité de ces épisodes hydrométéorologiques intenses en France. Ce mémoire la présente en détails, mettant en avant ses caractéristiques les plus influentes sur l'hydrologie de surface. Au regard de la complexité de la relation entre pluie et débit dans les bassins concernés et de la difficulté éprouvée par les modèles à base physique à fournir des informations précises en mode prédictif sans prévision de pluie, l'utilisation de l'apprentissage statistique par réseaux de neurones s'est imposée dans la recherche d'une solution opérationnelle.C'est ainsi que des modèles à réseaux de neurones ont été synthétisés et appliqués à un bassin de la zone cévenole, dans des contextes bien et mal jaugés. Les bons résultats obtenus ont été le point de départ de la généralisation à 15 bassins de la zone d'étude. A cette fin, une méthode de généralisation est développée à partir du modèle élaboré sur le bassin jaugé et de corrections estimées en fonction des caractéristiques physiques des bassins. Les résultats de l'application de cette méthode sont de bonne qualité et ouvrent la porte à de nombreux axes de recherche pour l'avenir, tout en démontrant encore que l'utilisation de l'apprentissage statistique pour l'hydrologie peut constituer une solution pertinente. / In the French Mediterranean regions, heavy rainfall episodes regularly occur and induce very rapid and voluminous floods called flash floods. They frequently cause fatalities and can cost more than one billion euros during only one event. In order to cope with this issue, the public authorities' implemented countermeasures in which hydrological forecasting plays an essential role.In this contexte, the French Flood Forecasting Service (called SCHAPI for Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations) initiated the BVNE (Digital Experimental Basin, for Bassin Versant Numérique Expérimental) project in order to enhance flash flood forecasts. The present work is a part of this project and aim at three main purposes: providing flash flood forecasts on well-gauged basins, poorly gauged basins and ungauged basins.The study area chosen, the Cévennes range, concentrates the major part of these intense hydrometeorological events in France. This dissertation presents it precisely, highlighting its most hydrological-influent characteristics.With regard to the complexity of the rainfall-discharge relation in the focused basins and the difficulty experienced by the physically based models to provide precise information in forecast mode without rainfall forecasts, the use of neural networks statistical learning imposed itself in the research of operational solutions.Thus, the neural networks models were designed and applied to a basin of the Cévennes range, in the well-gauged and poorly gauged contexts. The good results obtained have been the start point of a generalization to 15 basins of the study area.For this purpose, a generalization method was developed from the model created on the gauged basin and from corrections estimated as a function of basin characteristics.The results of this method application are of good quality and open the door to numerous pats of inquiry for the future, while demonstrating again that the use of statistical learning for hydrology can be a relevant solution.
|
27 |
Biométrie par signaux physiologiques / Biometry by physiological signalsChantaf, Samer 02 May 2011 (has links)
D'une manière générale, la biométrie a pour objectif d'identifier des individus, notamment à partir de leurs caractéristiques biologiques. Cette pratique tend à remplacer les méthodes traditionnelles de vérification d'identité des individus ; entre autres, les mots de passe et les codes de sécurité. Au quotidien, la biométrie trouve de vastes applications et la recherche de nouvelles méthodes biométriques est d'actualité. L'objectif de notre thèse consiste à développer et d'évaluer de nouvelles modalités biométriques basées sur des caractéristiques infalsifiables, ne pouvant être modifiées volontairement. Dans ce contexte, les signaux physiologiques sont pris en considération. Ainsi, nous avons proposé trois méthodes d'identification biométriques. La première méthode utilise l'électrocardiogramme (ECG) comme signature individuelle, alors que la deuxième est basée sur l'utilisation des signaux électromyographiques (EMG) de surface en réponse à une force d'intensité fixe. Enfin, la dernière technique explorée, utilise les réponses motrices obtenues suite à une stimulation électrique. Ces méthodes consistent d'abord à acquérir les signaux physiologiques chez des personnes saines. Ces signaux sont modélisés par des réseaux d'ondelettes afin d'en extraire des caractéristiques pertinentes. La phase d'identification automatique est effectuée par des réseaux de neurones. D'après les résultats obtenus suite à des expériences effectuées, les méthodes proposées conduisent à des performances d'identification intéressantes. La première méthode, utilisant le signal électro- cardiographique, permet d'obtenir un taux de reconnaissance de 92%, alors que l'identification par les signaux EMG, en réponse à une force d'une intensité fixe, permet une identification correcte à 80%. Enfin, une performance de 95% est obtenue par l'identification par réponse motrice. Pour ces trois techniques explorées, la robustesse par rapport au bruit à été étudiée / In general, biometrics aims to identify individuals from their biological characteristics. This practice tends to replace the traditional methods of identity verification of individuals, among others, passwords and security codes. Nowadays, biometrics found wide application and research of new biometric methods is topical. The objective of this thesis is to develop and evaluate new biometric methods based on tamper-proof characteristics that can not be changed voluntarily. In this context, the physiological signals are considered. Thus, we proposed three methods of biometric identification. The first method uses the electrocardiogram (ECG) as individual signature, while the second is based on the use of surface electromyography signals (EMG) in response to a force of fixed intensity. The final technique explored, uses the motor responses obtained after electrical stimulation. These methods consist first to acquire the physiological signals in healthy people. These signals are modeled by wavelets networks to extract relevant features. The identification phase is performed automatically by neural networks. According to the results obtained from experiments performed, the proposed methods lead to interesting performance identification. The first method, using the electro-cardiographic signal, achieves a recognition rate of 92%, while the identification by EMG signals, in response to a force of a fixed intensity, allows a correct identification of 80 %. Finally, a performance of 95% is obtained by identification by motor response. For these three techniques explored, the robustness to noise ratio was studied
|
28 |
Analyse des données en vue du diagnostic des moteurs Diesel de grande puissance / Data analysis for fault diagnosis on high power rated Diesel enginesKhelil, Yassine 04 October 2013 (has links)
Cette thèse a été réalisée dans le cadre d'un projet industriel (BMCI), dont l'objectif est d'augmenter la disponibilité des équipements sur les navires. Dans cette thèse, nous proposons une approche qui met à contribution deux approches différentes, à savoir une approche à base de données pour la détection des défauts et une approche à base de connaissances d'experts pour l'isolation des défauts. Cette approche se veut générique et applicable à différents sous-systèmes du moteur ainsi qu'à divers moteurs et offre une ouverture pour une éventuelle application sur d'autres équipements. De plus, elle est tolérante vis-à-vis des éventuels changements au niveau de l'instrumentation disponible. Cette approche a été testée sur la détection et l'isolation des défauts les plus fréquents et aux conséquences graves auxquels les moteurs Diesel sont sujets. Tous les sous-systèmes du moteurs Diesel sont inclus et l'approche de diagnostic prend en considération les interactions existantes entre les sous-systèmes. L'approche de diagnostic a été testée sur un banc d'essai et sur le navire militaire Adroit de DCNS. Les défauts réalisés sur divers circuits du banc moteur et les défauts apparus en fonctionnement sur certains moteurs de l'Adroit, ont été majoritairement détectés et isolés avec succès. De plus, pour pallier à l'incertitude et au caractère flou des relations expertes utilisées dans la procédure d'isolation, une validation des relations de cause à effet a été réalisée, dans le cadre de cette thèse, par la réalisation d'un modèle analytique de simulation de défauts. / This thesis is carried out within an industrial framework (BMCI) which aims to enhance the availability of equipments on board ships. In this work, a data-based method for fault detection is combined with a knowledge-based method for fault isolation. The presented approach is generic and characterized by the ability to be applied to all the Diesel engine subsystems, to different kind of Diesel engines and can also be extended to other equipments. Moreover, this approach is tolerant regarding differences in instrumentation. This approach is tested upon the detection and isolation of the most hazardous and frequent faults which subject Diesel engines. This approach intends to make diagnosis upon the entire Diesel engine including all the subsystems and the existing interactions between the subsystems. The proposed approach is tested upon a test bench and upon the Diesel engines of the DCNS military vessel textquotedblleft Adroit". Most of the introduced faults on the test bench and the appeared faults on the Adroit engines have been successfully detected and isolated. In addition, to deal with uncertainties and fuzziness of the causal relationships given by maintenance experts, a model is developed. This model aims to validate these causal relationships used in the isolation part of the diagnosis approach.
|
29 |
Approches pour l'apprentissage incrémental et la génération des images / Approaches for incremental learning and image generationShmelkov, Konstantin 29 March 2019 (has links)
Cette thèse explore deux sujets liés dans le contexte de l'apprentissage profond : l'apprentissage incrémental et la génération des images. L'apprentissage incrémental étudie l'entrainement des modèles dont la fonction objective évolue avec le temps (exemple : Ajout de nouvelles catégories à une tâche de classification). La génération d'images cherche à apprendre une distribution d'images naturelles pour générer de nouvelles images ressemblant aux images de départ.L’apprentissage incrémental est un problème difficile dû au phénomène appelé l'oubli catastrophique : tout changement important de l’objectif au cours de l'entrainement provoque une grave dégradation des connaissances acquises précédemment. Nous présentons un cadre d'apprentissage permettant d'introduire de nouvelles classes dans un réseau de détection d'objets. Il est basé sur l’idée de la distillation du savoir pour lutter les effets de l’oubli catastrophique : une copie fixe du réseau évalue les anciens échantillons et sa sortie est réutilisée dans un objectif auxiliaire pour stabiliser l’apprentissage de nouvelles classes. Notre framework extrait ces échantillons d'anciennes classes à la volée à partir d'images entrantes, contrairement à d'autres solutions qui gardent un sous-ensemble d'échantillons en mémoire.Pour la génération d’images, nous nous appuyons sur le modèle du réseau adverse génératif (en anglais generative adversarial network ou GAN). Récemment, les GANs ont considérablement amélioré la qualité des images générées. Cependant, ils offrent une pauvre couverture de l'ensemble des données : alors que les échantillons individuels sont de grande qualité, certains modes de la distribution d'origine peuvent ne pas être capturés. De plus, contrairement à la mesure de vraisemblance couramment utilisée pour les modèles génératives, les méthodes existantes d'évaluation GAN sont axées sur la qualité de l'image et n'évaluent donc pas la qualité de la couverture du jeu de données. Nous présentons deux approches pour résoudre ces problèmes.La première approche évalue les GANs conditionnels à la classe en utilisant deux mesures complémentaires basées sur la classification d'image - GAN-train et GAN-test, qui approchent respectivement le rappel (diversité) et la précision (qualité d'image) des GANs. Nous évaluons plusieurs approches GANs récentes en fonction de ces deux mesures et démontrons une différence de performance importante. De plus, nous observons que la difficulté croissante du jeu de données, de CIFAR10 à ImageNet, indique une corrélation inverse avec la qualité des GANs, comme le montre clairement nos mesures.Inspirés par notre étude des modèles GANs, la seconde approche applique explicitement la couverture d'un jeux de données pendant la phase d'entrainement de GAN. Nous développons un modèle génératif combinant la qualité d'image GAN et l'architecture VAE dans l'espace latente engendré par un modèle basé sur le flux, Real-NVP. Cela nous permet d’évaluer une vraisemblance correcte et d’assouplir simultanément l’hypothèse d’indépendance dans l’espace RVB qui est courante pour les VAE. Nous obtenons le score Inception et la FID en concurrence avec les GANs à la pointe de la technologie, tout en maintenant une bonne vraisemblance pour cette classe de modèles. / This dissertation explores two related topics in the context of deep learning: incremental learning and image generation. Incremental learning studies training of models with the objective function evolving over time, eg, addition of new categories to a classification task. Image generation seeks to learn a distribution of natural images for generating new images resembling original ones.Incremental learning is a challenging problem due to the phenomenon called catastrophic forgetting: any significant change to the objective during training causes a severe degradation of previously learned knowledge. We present a learning framework to introduce new classes to an object detection network. It is based on the idea of knowledge distillation to counteract catastrophic forgetting effects: fixed copy of the network evaluates old samples and its output is reused in an auxiliary loss to stabilize learning of new classes. Our framework mines these samples of old classes on the fly from incoming images, in contrast to other solutions that keep a subset of samples in memory.On the second topic of image generation, we build on the Generative Adversarial Network (GAN) model. Recently, GANs significantly improved the quality of generated images. However, they suffer from poor coverage of the dataset: while individual samples have great quality, some modes of the original distribution may not be captured. In addition, existing GAN evaluation methods are focused on image quality, and thus do not evaluate how well the dataset is covered, in contrast to the likelihood measure commonly used for generative models. We present two approaches to address these problems.The first method evaluates class-conditional GANs using two complementary measures based on image classification - GAN-train and GAN-test, which approximate recall (diversity) and precision (quality of the image) of GANs respectively. We evaluate several recent GAN approaches based on these two measures, and demonstrate a clear difference in performance. Furthermore, we observe that the increasing difficulty of the dataset, from CIFAR10 over CIFAR100 to ImageNet, shows an inverse correlation with the quality of the GANs, as clearly evident from our measures.Inspired by our study of GAN models, we present a method to explicitly enforce dataset coverage during the GAN training phase. We develop a generative model that combines GAN image quality with VAE architecture in the feature space engendered by a flow-based model Real-NVP. This allows us to evaluate a valid likelihood and simultaneously relax the independence assumption in RGB space which is common for VAEs. We achieve Inception score and FID competitive with state-of-the-art GANs, while maintaining good likelihood for this class of models.
|
30 |
Learning Deep Representations : Toward a better new understanding of the deep learning paradigm / Apprentissage de représentations profondes : vers une meilleure compréhension du paradigme d'apprentissage profondArnold, Ludovic 25 June 2013 (has links)
Depuis 2006, les algorithmes d’apprentissage profond qui s’appuient sur des modèles comprenant plusieurs couches de représentations ont pu surpasser l’état de l’art dans plusieurs domaines. Les modèles profonds peuvent être très efficaces en termes du nombre de paramètres nécessaires pour représenter des opérations complexes. Bien que l’entraînement des modèles profonds ait été traditionnellement considéré comme un problème difficile, une approche réussie a été d’utiliser une étape de pré-entraînement couche par couche, non supervisée, pour initialiser des modèles profonds supervisés. Tout d’abord, l’apprentissage non-supervisé présente de nombreux avantages par rapport à la généralisation car il repose uniquement sur des données non étiquetées qu’il est facile de trouver. Deuxièmement, la possibilité d’apprendre des représentations couche par couche, au lieu de toutes les couches à la fois, améliore encore la généralisation et réduit les temps de calcul. Cependant, l’apprentissage profond pose encore beaucoup de questions relatives à la consistance de l’apprentissage couche par couche, avec de nombreuses couches, et à la difficulté d’évaluer la performance, de sélectionner les modèles et d’optimiser la performance des couches. Dans cette thèse, nous examinons d’abord les limites de la justification variationnelle actuelle pour l’apprentissage couche par couche qui ne se généralise pas bien à de nombreuses couches et demandons si une méthode couche par couche peut jamais être vraiment consistante. Nous constatons que l’apprentissage couche par couche peut en effet être consistant et peut conduire à des modèles génératifs profonds optimaux. Pour ce faire, nous introduisons la borne supérieure de la meilleure probabilité marginale latente (BLM upper bound), un nouveau critère qui représente la log-vraisemblance maximale d’un modèle génératif profond quand les couches supérieures ne sont pas connues. Nous prouvons que la maximisation de ce critère pour chaque couche conduit à une architecture profonde optimale, à condition que le reste de l’entraînement se passe bien. Bien que ce critère ne puisse pas être calculé de manière exacte, nous montrons qu’il peut être maximisé efficacement par des auto-encodeurs quand l’encodeur du modèle est autorisé à être aussi riche que possible. Cela donne une nouvelle justification pour empiler les modèles entraînés pour reproduire leur entrée et donne de meilleurs résultats que l’approche variationnelle. En outre, nous donnons une approximation calculable de la BLM upper bound et montrons qu’elle peut être utilisée pour estimer avec précision la log-vraisemblance finale des modèles. Nous proposons une nouvelle méthode pour la sélection de modèles couche par couche pour les modèles profonds, et un nouveau critère pour déterminer si l’ajout de couches est justifié. Quant à la difficulté d’entraîner chaque couche, nous étudions aussi l’impact des métriques et de la paramétrisation sur la procédure de descente de gradient couramment utilisée pour la maximisation de la vraisemblance. Nous montrons que la descente de gradient est implicitement liée à la métrique de l’espace sous-jacent et que la métrique Euclidienne peut souvent être un choix inadapté car elle introduit une dépendance sur la paramétrisation et peut entraîner une violation de la symétrie. Pour pallier ce problème, nous étudions les avantages du gradient naturel et montrons qu’il peut être utilisé pour restaurer la symétrie, mais avec un coût de calcul élevé. Nous proposons donc qu’une paramétrisation centrée peut rétablir la symétrie avec une très faible surcharge computationnelle. / Since 2006, deep learning algorithms which rely on deep architectures with several layers of increasingly complex representations have been able to outperform state-of-the-art methods in several settings. Deep architectures can be very efficient in terms of the number of parameters required to represent complex operations which makes them very appealing to achieve good generalization with small amounts of data. Although training deep architectures has traditionally been considered a difficult problem, a successful approach has been to employ an unsupervised layer-wise pre-training step to initialize deep supervised models. First, unsupervised learning has many benefits w.r.t. generalization because it only relies on unlabeled data which is easily found. Second, the possibility to learn representations layer by layer instead of all layers at once improves generalization further and reduces computational time. However, deep learning is a very recent approach and still poses a lot of theoretical and practical questions concerning the consistency of layer-wise learning with many layers and difficulties such as evaluating performance, performing model selection and optimizing layers. In this thesis we first discuss the limitations of the current variational justification for layer-wise learning which does not generalize well to many layers. We ask if a layer-wise method can ever be truly consistent, i.e. capable of finding an optimal deep model by training one layer at a time without knowledge of the upper layers. We find that layer-wise learning can in fact be consistent and can lead to optimal deep generative models. To do this, we introduce the Best Latent Marginal (BLM) upper bound, a new criterion which represents the maximum log-likelihood of a deep generative model where the upper layers are unspecified. We prove that maximizing this criterion for each layer leads to an optimal deep architecture, provided the rest of the training goes well. Although this criterion cannot be computed exactly, we show that it can be maximized effectively by auto-encoders when the encoder part of the model is allowed to be as rich as possible. This gives a new justification for stacking models trained to reproduce their input and yields better results than the state-of-the-art variational approach. Additionally, we give a tractable approximation of the BLM upper-bound and show that it can accurately estimate the final log-likelihood of models. Taking advantage of these theoretical advances, we propose a new method for performing layer-wise model selection in deep architectures, and a new criterion to assess whether adding more layers is warranted. As for the difficulty of training layers, we also study the impact of metrics and parametrization on the commonly used gradient descent procedure for log-likelihood maximization. We show that gradient descent is implicitly linked with the metric of the underlying space and that the Euclidean metric may often be an unsuitable choice as it introduces a dependence on parametrization and can lead to a breach of symmetry. To mitigate this problem, we study the benefits of the natural gradient and show that it can restore symmetry, regrettably at a high computational cost. We thus propose that a centered parametrization may alleviate the problem with almost no computational overhead.
|
Page generated in 0.0649 seconds