• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 5
  • Tagged with
  • 23
  • 23
  • 14
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Caracterização funcional da proteína Nop8p de Saccharomyces cerevisiae / Functional characterization of the Saccharomyces cerevisiae nucleolar protein Nop8p

Santos, Márcia Cristina Teixeira dos 21 October 2011 (has links)
A proteína nucleolar Nop8p de levedura foi identificada inicialmente através de sua interação com Nip7p e está envolvida na formação da subunidade ribossomal 60S. A depleção de Nop8p em células de levedura leva à degradação prematura dos rRNAs, porém o mecanismo bioquímico responsável por este fenótipo ainda não é conhecido. Neste trabalho, mostramos que a interação de Nop8p com o rRNA 5.8S se dá através de sua região amino-terminal, enquanto que a porção carboxi-terminal é responsável pela interação com Nip7p e complementa parcialmente o defeito no crescimento observado na cepa mutante condicional Δnop8/GAL::NOP8. Além disso, Nop8p media a associação de Nip7p com as partículas pré-ribossomais. Nop8p também interage com a subunidade Rrp6p do exossomo e inibe a atividade do complexo in vitro, sugerindo que a diminuição dos níveis da subunidade ribosomal 60S detectada após a depleção de Nop8p pode ser resultado da degradação dos pré-rRNAs pelo exossomo. Estes resultados indicam que Nop8p pode regular a atividade do exossomo durante o processamento do pré-rRNA. / The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxylterminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates the association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control exosome function during pre-rRNA processing.
12

Caracterização da função molecular de Nop53 e de seu papel no controle do exossomo em Saccharomyces cerevisiae / Characterization of the role of Nop53 in the control of the Saccharomyces cerevisiae exosome

Cepeda, Leidy Paola Paez 21 August 2017 (has links)
Nop53 e uma protena nucleolar, conservada evolutivamente e essencial na levedura Saccharomyces cerevisiae para a biogênese da subunidade maior do ribossomo, 60S. O principal fenotipo causado pela repressão da expressão de Nop53 e o acumulo do intermedi ario de processamento de pre-Rrna, 7S, que tambem e substrato do complexo exossomo na formação do rRNA maduro 5:8S. Nop53 interage diretamente com a subunidade do exossomo Rrp6 e com a subunidade Mtr4 do co-ativador do exossomo TRAMP. O objetivo principal deste trabalho foi o de analisar como a interação entre Nop53 e o exossomo pode modular a atividade deste ultimo. Para isso, foram utilizados metodos bioqumicos, geneticos e de biologia molecular. Os resultados mostrados aqui demonstram que a depleção de Nop53 faz com que mais protenas ribossomais, principalmente da subunidade maior, sejam co-imunoprecipitadas com o core do exossomo, sugerindo que Nop53 possa ter um papel na liberação do exossomo da subunidade pre-60S depois da formação do rRNA maduro 5:8S. Esta hipotese foi conrmada atraves da separação de complexos por centrifugação em gradiente de glicerol, que mostrou a presenca de subunidades do exossomo em complexos maiores na ausência de Nop53, provavelmente correspondendo a partculas pre-ribossomais. Co-imunoprecipitação de RNA com o exossomo na ausência de Nop53 tambem conrmou uma maior associação deste complexo com o pre-rRNA 7S. Como tambem mostrado aqui, alem de interagir com Rrp6, Nop53 interage com subunidades do core do exossomo e a superexpressão de uma destas subunidades, Rrp43, complementa parcialmente a ausência de Nop53 na celula. Estes resultados levaram a conclusão de que Nop53 pode recrutar o exossomo para a partcula ribossomal pre-60S para a maturação do pre-rRNA 7S a 5:8S, e atue tambem na liberação do exossomo, possivelmente atraves de sua interação com a helicase Mtr4. / Abstract Nop53 is a nucleolar, conserved and essential protein in the yeast Saccharomyces cerevisiae, involved in the biogenesis of the large ribosomal subunit 60S. The main phenotype of the depletion of Nop53 in yeast cells is the accumulation of the prerRNA processing intermediate 7S, which is also the substrate of the exosome complex for the formation of the mature rRNA 5:8S. Nop53 directly interacts with the exosome subunit Rrp6, and with the subunit Mtr4 of the TRAMP complex, an exosome co-activator. The main objective of this work was the analysis of the interaction between Nop53 and the exosome and the identication of the mechanism through which Nop53 regulates the exosome activity. The results shown here demonstrate that the depletion of Nop53 leads to a more stable association of the exosome with the pre-60S ribosome particle, as determined by co-immunoprecipitation of proteins with one of the exosome core subunits, and by fractionation of complexes through glycerol gradients. These results suggested that Nop53 could play a role in the release of the exosome after the formation of the mature rRNA 5:8S. This hypothesis was conrmed through the co-immunoprecipitation of pre-rRNA 7S with the exosome in the absence of Nop53. In addition to the interaction with the exosome subunit Rrp6, as shown here, Nop53 also interacts with core subunits of the complex. Interestingly, overexpression of one of these subunits, Rrp43, partially complements the depletion of Nop53. These results led to the conclusion that Nop53 may recruit the exosome to the pre-60S particle for the maturation of the pre-rRNA 7S to the mature 5:8S, but Nop53 may also be involved in the release of the exosome, possibly through its interaction with the helicase Mtr4.
13

Caracterização funcional da proteína Nop8p de Saccharomyces cerevisiae / Functional characterization of the Saccharomyces cerevisiae nucleolar protein Nop8p

Márcia Cristina Teixeira dos Santos 21 October 2011 (has links)
A proteína nucleolar Nop8p de levedura foi identificada inicialmente através de sua interação com Nip7p e está envolvida na formação da subunidade ribossomal 60S. A depleção de Nop8p em células de levedura leva à degradação prematura dos rRNAs, porém o mecanismo bioquímico responsável por este fenótipo ainda não é conhecido. Neste trabalho, mostramos que a interação de Nop8p com o rRNA 5.8S se dá através de sua região amino-terminal, enquanto que a porção carboxi-terminal é responsável pela interação com Nip7p e complementa parcialmente o defeito no crescimento observado na cepa mutante condicional Δnop8/GAL::NOP8. Além disso, Nop8p media a associação de Nip7p com as partículas pré-ribossomais. Nop8p também interage com a subunidade Rrp6p do exossomo e inibe a atividade do complexo in vitro, sugerindo que a diminuição dos níveis da subunidade ribosomal 60S detectada após a depleção de Nop8p pode ser resultado da degradação dos pré-rRNAs pelo exossomo. Estes resultados indicam que Nop8p pode regular a atividade do exossomo durante o processamento do pré-rRNA. / The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxylterminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Δnop8/GAL::NOP8. Interestingly, Nop8p mediates the association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control exosome function during pre-rRNA processing.
14

Caracterização da função molecular de Nop53 e de seu papel no controle do exossomo em Saccharomyces cerevisiae / Characterization of the role of Nop53 in the control of the Saccharomyces cerevisiae exosome

Leidy Paola Paez Cepeda 21 August 2017 (has links)
Nop53 e uma protena nucleolar, conservada evolutivamente e essencial na levedura Saccharomyces cerevisiae para a biogênese da subunidade maior do ribossomo, 60S. O principal fenotipo causado pela repressão da expressão de Nop53 e o acumulo do intermedi ario de processamento de pre-Rrna, 7S, que tambem e substrato do complexo exossomo na formação do rRNA maduro 5:8S. Nop53 interage diretamente com a subunidade do exossomo Rrp6 e com a subunidade Mtr4 do co-ativador do exossomo TRAMP. O objetivo principal deste trabalho foi o de analisar como a interação entre Nop53 e o exossomo pode modular a atividade deste ultimo. Para isso, foram utilizados metodos bioqumicos, geneticos e de biologia molecular. Os resultados mostrados aqui demonstram que a depleção de Nop53 faz com que mais protenas ribossomais, principalmente da subunidade maior, sejam co-imunoprecipitadas com o core do exossomo, sugerindo que Nop53 possa ter um papel na liberação do exossomo da subunidade pre-60S depois da formação do rRNA maduro 5:8S. Esta hipotese foi conrmada atraves da separação de complexos por centrifugação em gradiente de glicerol, que mostrou a presenca de subunidades do exossomo em complexos maiores na ausência de Nop53, provavelmente correspondendo a partculas pre-ribossomais. Co-imunoprecipitação de RNA com o exossomo na ausência de Nop53 tambem conrmou uma maior associação deste complexo com o pre-rRNA 7S. Como tambem mostrado aqui, alem de interagir com Rrp6, Nop53 interage com subunidades do core do exossomo e a superexpressão de uma destas subunidades, Rrp43, complementa parcialmente a ausência de Nop53 na celula. Estes resultados levaram a conclusão de que Nop53 pode recrutar o exossomo para a partcula ribossomal pre-60S para a maturação do pre-rRNA 7S a 5:8S, e atue tambem na liberação do exossomo, possivelmente atraves de sua interação com a helicase Mtr4. / Abstract Nop53 is a nucleolar, conserved and essential protein in the yeast Saccharomyces cerevisiae, involved in the biogenesis of the large ribosomal subunit 60S. The main phenotype of the depletion of Nop53 in yeast cells is the accumulation of the prerRNA processing intermediate 7S, which is also the substrate of the exosome complex for the formation of the mature rRNA 5:8S. Nop53 directly interacts with the exosome subunit Rrp6, and with the subunit Mtr4 of the TRAMP complex, an exosome co-activator. The main objective of this work was the analysis of the interaction between Nop53 and the exosome and the identication of the mechanism through which Nop53 regulates the exosome activity. The results shown here demonstrate that the depletion of Nop53 leads to a more stable association of the exosome with the pre-60S ribosome particle, as determined by co-immunoprecipitation of proteins with one of the exosome core subunits, and by fractionation of complexes through glycerol gradients. These results suggested that Nop53 could play a role in the release of the exosome after the formation of the mature rRNA 5:8S. This hypothesis was conrmed through the co-immunoprecipitation of pre-rRNA 7S with the exosome in the absence of Nop53. In addition to the interaction with the exosome subunit Rrp6, as shown here, Nop53 also interacts with core subunits of the complex. Interestingly, overexpression of one of these subunits, Rrp43, partially complements the depletion of Nop53. These results led to the conclusion that Nop53 may recruit the exosome to the pre-60S particle for the maturation of the pre-rRNA 7S to the mature 5:8S, but Nop53 may also be involved in the release of the exosome, possibly through its interaction with the helicase Mtr4.
15

A la recherche de nouvelles AgNORs: une famille de protéines nucléolaires conservées et marqueurs potentiels du cancers / AgNORs: a groups of concerved nucleolar proteins and potential markers of cancer

Galliot, Sonia 15 January 2010 (has links)
Comme le nucléole joue un rôle fondamental dans l’expression des protéines, via la synthèse des ARN ribosomiques, il n’est donc pas surprenant que des études aient révélé un lien étroit, entre des dysfonctionnements nucléolaires et l’origine de certaines maladies humaines. La découverte, il y a plusieurs années, d’un taux anormalement élevé de protéines nucléolaires dites argyrophiles ou AgNORs, dans les cellules tumorales, a permis d’envisager leur utilisation comme outil diagnostique ou pronostique du cancer. Détectées, de manière in vitro grâce à leur affinité pour l’argent, l’identification de quelques protéines AgNORs n’a pourtant pas permis d’établir une caractéristique commune à toutes les protéines argyrophiles détectées dans les extraits nucléolaires. Ainsi, bien que le test colorimétrique AgNOR soit utilisé dans de nombreux laboratoires académiques, l’absence d’identification de protéines AgNORs spécifiques du processus de cancérisation, a limité son utilisation en laboratoire clinique. Comme certaines limites technologiques et expérimentales ont limité leur caractérisation chez l’humain, nous avons donc décidé de reprendre les recherches sur ce sujet et de le réactualiser grâce aux avancées technologiques et scientifiques. Les protéines AgNORs étant étroitement liées à la biogenèse des ribosomes, nous avons donc décidé d’amorcer nos recherches chez la levure Saccharomyces cerevisiae, dans laquelle, la voie de biosynthèse des ribosomes a été particulièrement bien décrite. Devant l’intérêt biologique et médical de ces protéines, l’objectif de ce projet a donc été triple :<p>1-identifier des protéines AgNORs chez la levure<p>2-caractériser les propriétés physico-fonctionnelles et physico-chimiques de ces protéines AgNORs.<p>3-utiliser ces caractéristiques physico-chimiques pour rechercher de nouvelles AgNORs humaines, spécifiques de processus de cancérisation et potentiellement utilisables comme marqueurs tumoraux./The nucleolus is a subnuclear compartment that organized around ribosomal gene (rDNA) repeats NORs, which encode for ribosomal RNA. A peculiar group of acidic proteins which are highly argyrophilic are also localized at the same sites as NORs, thus allowing NORs to be very clearly and rapidly visualized by silver nitrate staining procedures. However, if three human argyrophilic proteins, UBF, C23 (nucleolin) and B23 (nucleophosmin), have been associated for staining of NOR, the exact number of AgNOR proteins and their intrinsic biochemical feature are unclear. Here, we have performed an heterologous screen in a genetically tractable eukaryotic organism (budding yeast) for the identification of novel AgNOR proteins and in vitro characterized an intrinsic feature that underlies silver binding and offers a strong predictive value for the identification of novel human AgNOR proteins. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
16

Caracterização funcional da proteína Cwc24p de Saccharomyces cerevisiae / Functional characterization of Cwc24p in Saccharomyces cerevisiae

Goldfeder, Mauricio Barbugiani 22 September 2008 (has links)
Em eucariotos, a formação das subunidades ribossomais envolve múltiplos fatores, responsáveis pelas etapas de maturação dos rRNAs e por sua associação a proteínas ribossomais. A via de processamento de pré-rRNA é bastante complexa e inclui várias etapas de modificação de nucleotídeos e clivagens endo- e exonucleolíticas. As modificações de nucleotídeos são dirigidas por snoRNPs, formados por snoRNAs e proteínas, que são divididos em duas classes gerais, de box H/ACA (pseudouridilação) e de box C/D (metilação). Dentre os snoRNP de box C/D está o U3, que embora apresente as seqüências características e se associe a proteínas desse grupo de snoRNPs, não dirige metilações no rRNA, mas sim as clivagens iniciais no pré-rRNA 35S. O snoRNA U3 de Saccharomyces cerevisiae é codificado por dois genes que contêm introns, snR17A e snR17B. Embora a via de montagem do snoRNP U3 ainda não tenha sido determinada com precisão, sabe-se que algumas proteínas do core de box C/D ligam-se ao pré-snoRNA U3 co-transcricionalmente, afetando o splicing e o processamento da extremidade 3´ deste snoRNA. A proteína Cwc24p, cuja caracterização funcional foi o objetivo deste trabalho, foi isolada em nosso laboratório interagindo com Nop17p, um fator de montagem dos snoRNPs de box C/D. Cwc24p possui um domínio RING conservado e foi isolada previamente em um complexo contendo o fator de splicing Cef1p. Os resultados aqui obtidos mostram que, de maneira condizente com os dados de interação, Cwc24p é uma proteína nuclear e sua depleção leva ao acúmulo do pré-snoRNA U3, o que acarreta uma diminuição da velocidade de processamento do pré-rRNA 35S. O modelo aqui proposto prevê o recrutamento de Cwc24p para o pré-snoRNA U3 por Nop17p, onde atua como um fator de eficiência do splicing. Estes resultados levaram à conclusão de que Cwc24p está envolvida no splicing do pré-snoRNA U3, afetando indiretamente o processamento do pré-rRNA. / In eukaryotes, the ribosome biogenesis involves a large number of factors, that are responsible for the rRNAs maturation and for their association with ribosomal proteins. The pre-rRNA processing pathway is very complex and includes many steps of nucleotide modifications and endo- and exonucleolytic cleavage reactions. The nucleotide modifications are directed by snoRNPs that are formed by snoRNAs and proteins, divided in two major groups, of box H/ACA (which direct pseudouridilation), or of box C/D (methylation). Although the snoRNP U3 presents the snoRNA sequences and the proteins characteristics of box C/D class, it is not involved in methylation, but rather in the early cleavages of pre-rRNA 35S. U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 cotranscriptionally, thereby affecting splicing and 3\'-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING-finger protein which had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistently with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35S precursor rRNA. These results led us to the conclusion that Cwc24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.
17

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Marques da Cruz, Ana Maria Martins 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
18

Estudo das interações entre as subunidades do complexo exossomo em Saccharomyces cerevisiae / Study of the interactions between the subunits of the exossome complex of H. sapiens and T. bracei

Tavares, José Roberto 17 November 2004 (has links)
O exossomo é um complexo de exorribonucleases composto por onze proteínas envolvidas no processamento de rRNA, snRNAs, snoRNAs e na degradação de mRNAs. Todas as subunidades do complexo possuem possíveis domínios de RNase porém apenas quatro delas já tiveram a sua atividade de exorribonuclease caracterizada in vitro. Este complexo foi identificado inicialmente em levedura, sendo também encontrado em outros organismos eucarióticos e também em archaea. O estudo das interações entre suas subunidades resultou em modelos estruturais para o exossomo de H sapiens e T. brucei. A despeito do exossomo ter sido caracterizado em levedura, um estudo das possíveis interações entre as subunidades neste organismo ainda não foi realizado. Com a proposta de identificar estas interações em levedura, neste trabalho foi usado o sistema do duplo híbrido, uma poderosa ferramenta para analisar as interações proteína-proteína. Os resultados obtidos através deste sistema mostraram que a subunidade Rrp4p interagiu com as proteínas Rrp41p, Rrp44p, Mtr3p e Rrp6p. A subunidade Rrp41p mostrou uma forte interação com Rrp45p e a subunidade Rrp42p com Mtr3p. A proteína Rrp45p interagiu com Rrp41p e Rrp43p. A proteína Mtr3p interagiu com Rrp4p, Rrp42p e com Csl4p. Em nossos testes a subunidade Rrp40p não mostrou qualquer interação com as outras subunidades do complexo. Outras proteínas envolvidas no processamento RNA como Noplp, Nop58p, Nop8p e Lsm8p também foram testadas para interações com as subunidades do exossomo e mostraram que interagem com Rrp4p e Mtr3p. Estes resultados inéditos trouxeram novas informações para o futuro modelo estrutural do exossomo e novos da dos sobre a participação deste complexo no processamento de RNA. A determinação da sua estrutura pode contribuir para entender a versatilidade deste complexo em vários processos nos quais ele está envolvido na célula. / Exossome is a complex of exorribonucleases composed for eleven proteins involved in the processing of rRNA, snRNAs, snoRNAs and in the degradation of mRNAs. All the subunits of this complex possess possible RNase domains, however only four of them already had its exorribonucleases activity of characterized in vitro. This complex was identified initially in yeast, being also found in other eukaryotes organisms and also in archaea. The study of the interactions between its subunits resulted in structural models for the exossome of H. sapiens and T. bracei. The spite of exossome has been previously characterized in yeast a study of the possible interactions between the subunits in this organism was still not carried through. With the proposal of identifying these interactions in yeast, we used this work system of yeast two hybrid, a powerful tool analyze protein-protein interactions. The results obtained through this system showed that the subunit Rrp4p internet with the proteins Rrp41p, Rrp44p, Mtr3p and Rrp6p. The subunit Rrp41p showed to one strong interaction with Rrp45p and the subunit Rrp42p with Mtr3p. The Rrp45p protein interacted with Rrp41p and Rrp43p. The Mtr3p protein interacted with Rrp4p, Rrp42p and with Cs14p. In our tests the subunit Rrp40p did not show any interaction with the other subunits of the complex. Other proteins involved in processing RNA as Nop1p, Nop58p, Nop8p and Lsm8p had also been tested for interactions with the subunits of the exossome and had shown that they internet with Rrp4p and Mtr3p. These results had brought new inforrnation for a future structural model of the exossome and new data on the participation of this complex in the processing of RNA. The deterrnination of its structure can contribute to better understand the versatility of this complex in the various processes in which it is involved within the cell.
19

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Ana Maria Martins Marques da Cruz 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
20

Caracterização funcional da proteína Cwc24p de Saccharomyces cerevisiae / Functional characterization of Cwc24p in Saccharomyces cerevisiae

Mauricio Barbugiani Goldfeder 22 September 2008 (has links)
Em eucariotos, a formação das subunidades ribossomais envolve múltiplos fatores, responsáveis pelas etapas de maturação dos rRNAs e por sua associação a proteínas ribossomais. A via de processamento de pré-rRNA é bastante complexa e inclui várias etapas de modificação de nucleotídeos e clivagens endo- e exonucleolíticas. As modificações de nucleotídeos são dirigidas por snoRNPs, formados por snoRNAs e proteínas, que são divididos em duas classes gerais, de box H/ACA (pseudouridilação) e de box C/D (metilação). Dentre os snoRNP de box C/D está o U3, que embora apresente as seqüências características e se associe a proteínas desse grupo de snoRNPs, não dirige metilações no rRNA, mas sim as clivagens iniciais no pré-rRNA 35S. O snoRNA U3 de Saccharomyces cerevisiae é codificado por dois genes que contêm introns, snR17A e snR17B. Embora a via de montagem do snoRNP U3 ainda não tenha sido determinada com precisão, sabe-se que algumas proteínas do core de box C/D ligam-se ao pré-snoRNA U3 co-transcricionalmente, afetando o splicing e o processamento da extremidade 3´ deste snoRNA. A proteína Cwc24p, cuja caracterização funcional foi o objetivo deste trabalho, foi isolada em nosso laboratório interagindo com Nop17p, um fator de montagem dos snoRNPs de box C/D. Cwc24p possui um domínio RING conservado e foi isolada previamente em um complexo contendo o fator de splicing Cef1p. Os resultados aqui obtidos mostram que, de maneira condizente com os dados de interação, Cwc24p é uma proteína nuclear e sua depleção leva ao acúmulo do pré-snoRNA U3, o que acarreta uma diminuição da velocidade de processamento do pré-rRNA 35S. O modelo aqui proposto prevê o recrutamento de Cwc24p para o pré-snoRNA U3 por Nop17p, onde atua como um fator de eficiência do splicing. Estes resultados levaram à conclusão de que Cwc24p está envolvida no splicing do pré-snoRNA U3, afetando indiretamente o processamento do pré-rRNA. / In eukaryotes, the ribosome biogenesis involves a large number of factors, that are responsible for the rRNAs maturation and for their association with ribosomal proteins. The pre-rRNA processing pathway is very complex and includes many steps of nucleotide modifications and endo- and exonucleolytic cleavage reactions. The nucleotide modifications are directed by snoRNPs that are formed by snoRNAs and proteins, divided in two major groups, of box H/ACA (which direct pseudouridilation), or of box C/D (methylation). Although the snoRNP U3 presents the snoRNA sequences and the proteins characteristics of box C/D class, it is not involved in methylation, but rather in the early cleavages of pre-rRNA 35S. U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 cotranscriptionally, thereby affecting splicing and 3\'-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING-finger protein which had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistently with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35S precursor rRNA. These results led us to the conclusion that Cwc24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.

Page generated in 0.1604 seconds