• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Monte Carlo radiation transfer studies of protoplanetary environments

Walker, Christina H. January 2007 (has links)
Monte Carlo radiation transfer provides an efficient modelling tool for probing the dusty local environment of young stars. Within this thesis, such theoretical models are used to study the disk structure of objects across the mass spectrum - young low mass Brown Dwarfs, solar mass T-Tauri stars, intermediate mass Herbig Ae stars, and candidate B-stars with massive disks. A Monte Carlo radiation transfer code is used to model images and photometric data in the UV - mm wavelength range. These models demonstrate how modelling techniques have been updated in an attempt to reduce the number of unknown parameters and extend the diversity of objects that can be studied.
492

Hawking radiation in dispersive media

Robertson, Scott James January 2011 (has links)
Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking’s prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking emission spectra in dispersive systems. It examines two black-hole analogue systems: it begins by introducing the well-known acoustic model, presenting some original results in that context; then, through analogy with the acoustic model, goes on to develop the lesser-known fibre-optical model. The following original results are presented in the context of both of these models: • an analytic expression for the low-frequency temperature is found for a hyperbolic tangent background profile, valid in the entire parameter space; it is well-known that the spectrum is approximately thermal at low frequencies, but a universally valid expression for the corresponding temperature is an original development; • an analytic expression for the spectrum, valid over almost the entire frequency range, when the velocity profile parameters lie in the regime where the low-frequency temperature is given by the Hawking prediction; previous work has focused on the low-frequency thermal spectrum and the characterization of the deviations from thermality, rather than a single analytic expression; and • a new unexplored regime where no group-velocity horizon exists is examined; the Hawking spectra are found to be non-zero here, but also highly non-thermal, and are found, in the limit of small deviations, to vary with the square of the maximum deviation; the analytic expression for the case with a horizon is found to carry over to this new regime, with appropriate modifications. Furthermore, the thesis examines the results of a classical frequency-shifting experiment in the context of fibre-optical horizons. The theory of this process is presented for both a constant-velocity and a constantly-decelerating pulse, the latter case taking account of the Raman effect. The resulting spectra are at least qualititively explained, but there is a discrepancy between theory and experiment that has not yet been accounted for.
493

Radiative heat transfer in combustion applications : parallel efficiencies of two gas models, turbulent radiation interactions in particulate laden flows, and coarse mesh finite difference acceleration for improved temporal accuracy

Cleveland, Mathew A. 02 December 2011 (has links)
We investigate several aspects of the numerical solution of the radiative transfer equation in the context of coal combustion: the parallel efficiency of two commonly used opacity models, the sensitivity of turbulent radiation interaction (TRI) effects to the presence of coal particulate, and an improvement of the order of temporal convergence using the coarse mesh finite difference (CMFD) method. There are four opacity models commonly employed to evaluate the radiative transfer equation in combustion applications; line-by-line (LBL), multigroup, band, and global. Most of these models have been rigorously evaluated for serial computations of a spectrum of problem types [1]. Studies of these models for parallel computations [2] are limited. We assessed the performance of the Spectral-Line- Based weighted sum of gray gasses (SLW) model, a global method related to K-distribution methods [1], and the LBL model. The LBL model directly interpolates opacity information from large data tables. The LBL model outperforms the SLW model in almost all cases, as suggested by Wang et al. [3]. The SLW model, however, shows superior parallel scaling performance and a decreased sensitivity to load imbalancing, suggesting that for some problems, global methods such as the SLW model, could outperform the LBL model. Turbulent radiation interaction (TRI) effects are associated with the differences in the time scales of the fluid dynamic equations and the radiative transfer equations. Solving on the fluid dynamic time step size produces large changes in the radiation field over the time step. We have modifed the statistically homogeneous, non-premixed flame problem of Deshmukh et al. [4] to include coal-type particulate. The addition of low mass loadings of particulate minimally impacts the TRI effects. Observed differences in the TRI effects from variations in the packing fractions and Stokes numbers are difficult to analyze because of the significant effect of variations in problem initialization. The TRI effects are very sensitive to the initialization of the turbulence in the system. The TRI parameters are somewhat sensitive to the treatment of particulate temperature and the particulate optical thickness, and this effect are amplified by increased particulate loading. Monte Carlo radiative heat transfer simulations of time-dependent combustion processes generally involve an explicit evaluation of emission source because of the expense of the transport solver. Recently, Park et al. [5] have applied quasidiffusion with Monte Carlo in high energy density radiative transfer applications. We employ a Crank-Nicholson temporal integration scheme in conjunction with the coarse mesh finite difference (CMFD) method, in an effort to improve the temporal accuracy of the Monte Carlo solver. Our results show that this CMFD-CN method is an improvement over Monte Carlo with CMFD time-differenced via Backward Euler, and Implicit Monte Carlo [6] (IMC). The increase in accuracy involves very little increase in computational cost, and the figure of merit for the CMFD-CN scheme is greater than IMC. / Graduation date: 2012
494

A determination of the W boson mass by direct reconstruction using the DELPHI detector at LEPII

Thomas, Julie Eleanor January 1999 (has links)
No description available.
495

Measurement and modelling of light scattering by small to medium size parameter airborne particles

McCall, David Samuel January 2011 (has links)
An investigation into the light scattering properties of Saharan dust grains is presented. An electrodynamic trap has been used to levitate single dust particles. By adjusting the trap parameters, partial randomisation of the particle orientation has been introduced. While levitated, the particles were illuminated by a laser, and a rotating half-wave retarder enabled selection of vertically or horizontally polarized incident light. A laser diffractometer and linear photodiode array have been used to measure intensity at scattering angles between 0.5° and 177°. Combining these measurements with Fraunhofer diffraction as calculated for a range of appropriately-sized apertures allows the calculation of the phase function and degree of linear polarization. The phase functions and degree of linear polarisation for four case study particles are presented - the phase functions are found to be featureless across most of the scattering region, with none of the halo features or rainbow peaks associated with regularly shaped particles such as hexagonal columns or spheres. Particle models comprised of large numbers of facets have been constructed to resemble the levitated particles. Utilizing Gaussian random sphere methods, increasing levels of roughness have been added to the surfaces of these models. A Geometric Optics model and a related model, Ray Tracing with Diffraction on Facets, have been modified to calculate scattering on these particle reconstructions. Scattering calculations were performed on each of these reconstructions using a range of refractive indices and two rotation regimes – one where the orientations of the reconstructed particle were limited to match those observed when the particle was levitated, and one where the orientation was not limited. Qualitative comparisons are performed on the phase functions and degree of linear polarization, where it is observed that the addition of roughness to the modelled spheroids causes the computed phase functions to increasingly resemble those from the levitated particles. Limiting the orientation of the particles does not affect the scattering noticeably. The addition of a very small absorption coefficient does not change the comparisons considerably. As the absorption coefficient is increased, however, the quality of the comparisons decreases rapidly in all cases but one. The phase functions are quantitatively compared using RMS errors, and further comparison is performed using the asymmetry parameter.
496

Giant planet formation and migration

Ayliffe, Benjamin A. January 2009 (has links)
This thesis describes efforts to improve the realism of numerical models of giant planet formation and migration in an attempt to better understand these processes. A new approach has been taken to the modelling of accretion, designed to mimic reality by allowing gas to accumulate upon a protoplanetary surface. Implementing this treatment in three-dimensional self-gravity radiation hydrodynamics calculations provides an excellent model for planet growth, allowing an exploration of the factors that affect accretion. Moreover, these calculations have also been extended to investigate the migration of protoplanets through their parent discs as they grow. When focusing on the growth of non-migrating protoplanets, the models are performed using small sections of disc, enabling excellent resolution right down to the core; gas structures and flow can be resolved on scales from ~ 10^4 to 10^11 metres. Using radiative transfer, these models reveal the importance of opacity in determining the accretion rates. For the low mass protoplanets, equivalent in mass to a giant planet core (~ 10 M⊕), the accretion rates were found to increase by up to an order of magnitude for a factor of 100 reduction in the grain opacity of the parent circumstellar disc. However, even these low opacities lead to growth rates that are an order of magnitude slower than those obtained in locally-isothermal conditions. For high mass protoplanets (>~ 100M⊕), the accretion rates show very little dependence upon opacity. Nevertheless, the rates obtained using radiative transfer are still lower than those obtained in locally-isothermal models by a factor of ~2, due to the release of accretion energy as heat. Only high mass protoplanets are found to be capable of developing circumplanetary discs, and this ability is dependent upon the opacity, as are the scaleheights of such discs. However, their radial extents were found to be independent of the opacity and the protoplanet mass, all reaching ≈ RH/3, inline with analytic predictions. Migration is investigated using global models, ensuring a self-consistently evolved disc. Using locally-isothermal calculations, it was found that the capture radius of an accreting sink particle, used to model a protoplanet without a surface, must be small (<< RH) to yield migration timescales consistent with linear theory of Type I migration. In the low mass regime of Type I migration, accreting sinks with such small radii yield timescales consistent with those models in which a protoplanetary surface is used. However, for high mass protoplanets, undergoing Type II migration, the surface treatment leads to faster rates of migration, indicating the importance of a realistic accretion model. Using radiative transfer, with high opacities, leads to a factor of ~ 3 increase in the migration timescale of the lowest mass protoplanets, improving their chances of survival. As suitable gas giant progenitors, their survival is key to understanding the growth of giant planets. An unexpected result of the radiative transfer was a reduction in the migration timescale of high mass planets. This appears to be a result of the less thoroughly evacuated gaps created by planets in non-locally-isothermal discs, which affects the corotation torque.
497

Cogénération héliothermodynamique avec concentrateur linéaire de Fresnel : modélisation de l’ensemble du procédé / Concentrating solar power based cogeneration with Linear Fresnel Collector : modelling of the whole process

Veynandt, François 01 December 2011 (has links)
Le concentrateur à réflecteur linéaire de Fresnel (LFR) est une technologie solaire thermodynamique en plein essor : petites applications industrielles (chaleur, froid, électricité) à centrales électriques (10-100 MWel). Ce travail de thèse établit un modèle global du procédé solaire, en régime permanent, pour un prédimensionnement du système. Le modèle comprend trois parties chaînées : (i) les transferts radiatifs dans le concentrateur optique, modélisés précisément par une méthode de Monte Carlo (environnement EDStar) ; (ii) les transferts thermiques dans le récepteur, évalués analytiquement (puissances, températures) ; (iii) le cycle thermodynamique, avec Thermoptim. L’application étudiée couple un concentrateur LFR à un moteur Ericsson. L’air est fluide caloporteur et de travail. Un prototype est en construction. L’hybridation et le stockage thermique sont des options clés. Un modèle systémique permettrait d’optimiser l’opération du procédé, en étudiant son comportement dynamique. / Linear Fresnel Reflector (LFR) is a promising Concentrating Solar Power technology. Research is booming and industrial applications are emerging. Applications range from small production units (heat, cold, electricity) to utility scale power plants (several tenths of MW). This PhD work establishes a global model of the solar process, in order to improve our knowledge of the system’s performances. It is a static model suited for a pre-design of the system. The model is chaining three parts. Radiative heat transfer in the optical concentrator is modelled by Monte Carlo statistical Method. The algorithm enables a detailed study of any geometrical configuration, especially through absorbed power flux maps on the receiver. The simulation tool is using the environment of development EDStar. The thermal model calculates analytically the useful thermal power, losses and temperature profiles along the receiver (glass cover, fluid, pipe...). The thermodynamic cycle is simulated analytically using the software Thermoptim. The studied application uses air as heat transfer and working fluid. Air directly feeds an Ericsson engine. The engine developed by LaTEP laboratory is promising for small scale cogeneration (1 to several tenths of kWel). The prototype Linear Fresnel Reflector built in Ecole des Mines d’Albi will enable experimental study of a solar process coupling an LFR concentrator and an Ericsson engine. The technology under study can feed a power plant or a cogeneration system in the industry, producing electricity and heat at 100 to 250°C. Hybridisation with an other energy source (biomass, gas...) and thermal storage (molten salt?) are key features to investigate. To optimise the operating strategy of the process, dynamic behaviour must be studied: a systemic or agent based model is a very relevant approach.
498

Contribution à la métrologie des feux de forêts : couplage de données thermiques et de données optiques / Fire forest metrology : coupling of thermal and optical data

Rudz, Steve 29 September 2011 (has links)
L'objectif de cette thèse a été de mettre au point un capteur dédié à la métrologie des feux de forêts. Ce capteur mesure le flux thermique émit par la flamme car c'est le seul paramètre global mesurable. Le modèle de flamme mince qui lui est associé permet d'obtenir une information riche (flux volumique, positions avant ou arrière du front de flamme, longueur de flamme). Ce capteur a été prévu pour servir comme un outil de calibration et de validation du modèle de propagation présenté au chapitre 1. Cependant la calibration requiert la minimisation de l’écart entre le flux thermique mesuré et calculé, elle fait donc intervenir la position du front de flamme, ce qui ajoute beaucoup de paramètres à la fonction objectif. Mon travail dans cette thèse a été de remédier à ce problème en ajoutant au système de mesure une partie optique. Les données optiques obtenues à l'aide d'une caméra visuelle ont permis d'extraire le contour au sol de la flamme et d'en déduire sa position. Le système développé dans ce travail est unique et représente l’unité d’un réseau de capteurs pour la métrologie des feux de végétation, ou des feux à grande échelle. / The main purpose of this thesis is to design a sensor for forest fire metrology. This sensor measures the radiative heat flux emitted by the flame because it is the only global accessible. The thin flame model associated provides useful information (volume heat flux, forward and backward fire front positions, flame length…). This sensor has been designed to calibrate and validate a fire propagation model presented in chapter 1. Nevertheless, the calibration process requires the minimization of the gap between the measured and the computed heat flux, so fire front positions are involved which leads to add a lot of parameters to the objective function. My work was to solve this problem by incorporating optical measurements. Optical data obtained through a visual camera allow to extract fire front positions. The sensor developed in this work is unique and is the unit of a sensor network for forest fire metrology.
499

Transfert radiatif hors équilibre thermodynamique local dans les atmosphères d'étoiles supergéantes rouges / Non local thermodynamical equilibrium radiative transfert in red supergiants stars atmospheres

Lambert, Julien 03 December 2012 (has links)
L'eau est un constituant essentiel de l'atmosphère de supergéantes rouges (RSG), mais dont l'influence reste mal comprise. Le spectre observé de l'eau de ces étoiles ne peut être reproduit que par l'ajout d'une coquille de gaz moléculaire, les MOLsphères. Cependant, l'hypothèse des MOLsphères reste fragile et sujette à caution. Dans le but de mieux interpréter les spectres observés, la synthèse de spectres hors équilibre thermodynamique local est une approche potentiellement importante. Les effets hors ETL étant potentiellement fort, ils pourraient être en mesure de lever les problèmes de l'interprétation des raies de l'eau sans ajout de MOLsphère et impliquer un rôle important dans la dynamique de l'atmosphère. Pour cela, nous avons développé une méthode originale en mesure de résoudre l'équation de transfert pour les nombreuses transitions radiatives de l'eau sans approximationETL. Cette méthode a été mise en oeuvre via le développement d'un code de transfert radiatif parallèle. Les premiers résultats montrent que les effets hors ETL dans l'atmosphère des RSG, et leur impact sur le spectre comme sur certaines observables utilisées pour sonder ces étoiles, sont importants / Water is an important constituent of the atmosphere of red supergiant stars (RSG), which influence remains however poorly understood. The water spectrum of these stars can apparently be only reproduced through the addition of a detached shell of cool molecular gas, the so-called MOLspheres. However, this hypothesis is still cautious. In order to better interpret observed spectra, non local thermodynamic equilibrium (NLTE) spectrum synthesis may be potentially important. NLTE effects being potentially important, they may alleviate the problems in the interpretation of water spectra, and affect the atmosphere dynamics. We thus developed an original method to solve the radiative transfer equation, adapted to the numerous water transitions and without the LTE approximation. This method has been implemented in an original parallel code. Preliminary results show that NLTE effects in RSG atmospheres and their impact on observables such as the emergent spectrum are very important.
500

Mesure de champs de températures vraies par thermo-réflectométrie proche infrarouge / Measurement of true temperature fields by near-infrared thermoreflectometry

Gilblas, Remi 17 October 2012 (has links)
La mesure de champs de température sans contact est un paramètre clé pour l'optimisation et le contrôle des procédés. Les systèmes actuels présentent des limitations, particulièrement sur des surfaces hétérogènes et/ou dans des conditions dynamiques pouvant entraîner une altération de la surface. Ces restrictions sont causées par la méconnaissance de l'émissivité de la surface qui est une fonction complexe de nombreuses grandeurs physiques (température, longueur d'onde, rugosité, direction de détection). La thèse présentée propose le développement complet d'une nouvelle méthode de mesure de champs de température vraie, dénommée THERMOREFLECTOMETRIE, applicable sur tout type de matériaux opaques, dans la gamme [300-1000]°C. Elle permet la mesure en ligne de l'émissivité par le couplage d'une étape classique de THERMOGRAPHIE avec une étape de REFLECTOMETRIE laser. La démarche adoptée consiste premièrement en l'analyse critique de la méthode et de ses facteurs d'influence, ainsi que du dimensionnement optimal des éléments par des études en simulations. Ensuite un prototype opérationnel est mis en oeuvre et ses défauts sont caractérisés, du point de vue d'un système de type CAMERA, et les corrections nécessaires sont mises en place. Enfin, les performances expérimentales sont évaluées sur des scènes thermiques complexes et hétérogènes qui mettent en évidence la bonne précision du prototype pour tous les échantillons testés / True temperature field measurement is a key parameter for the optimization and the control of industrial processes. Current systems present limitations, especially on heterogeneous surfaces and/or in dynamical conditions involving the surface's variation. These restrictions are due to the ignorance of the surface's emissivity, which is a complex function of many physical quantities (temperature, wavelength, roughness, direction of detection). This thesis presents the complete development of a new method of true temperature field measurement, called Thermoreflectometry, applicable on any kind of opaque material, in the range [300-1000]°C. It allows the on-line measurement of emissivity by mixing a step of classical THERMOGRAPHY with a step of laser REFLECTOMETRY. The approach of this work is, first, the critical analysis of the method and its influence quantities, and then the optimal dimensionment of the components by simulation studies. Thirdly, a prototype is built and its defaults are characterized, following a CAMERA-based point of view, and the possible corrections are implemented. Finally, the experimental performances are estimated on some complex heterogeneous thermal scenes which emphasize the prototype's precision for all the tested samples

Page generated in 0.0652 seconds