21 |
Molecular relaxation dynamics of Anthracene cations studied in an electrostatic storage ring / Dynamique de relaxation de cations d'Anthracène étudiée dans un anneau de stockage électrostatiqueJi, Ming Chao 28 April 2015 (has links)
Les molécules hydrocarbures aromatiques polycycliques (HAP) sont à l'heure actuelle considérées comme probablement responsables des bandes d'émission infrarouge non identifiées du milieu interstellaire (MIS). La dynamique de refroidissement des molécules HAP est essentielle pour estimer leur photo-stabilité, leur durée de vie et les distributions de taille dans le MIS. Au cours des dernières années, les expériences s'appuyant sur le stockage électrostatique d'ions moléculaires ou d'agrégats sont devenus des outils puissants pour étudier leur refroidissement dans une large gamme de temps allant de la microseconde à quelques secondes. En général, l'étude des courbes de déclin associées aux processus de dissociation dans le cas des cations ou bien de détachement d'électrons dans le cas des anions fournit des informations sur l'évolution de l'énergie interne des ions stockés. Dans ce travail de thèse, le refroidissement de cations d'anthracène a été étudié dans un anneau de stockage électrostatique compact, le Mini-Ring, jusqu'à 8 ms. Les courbes de déclin spontané provenant de la dissociation par émission de fragment C2H2 ou H neutres montrent trois régions distinctives. Ces trois régions indiquent différents régimes de refroidissement en fonction du temps de stockage, la dissociation domine pour les temps inférieurs à 1 ms, l'effet de l'émission radiative entre alors en compétition avec la dissociation puis domine au-delà de 3 ms / The polycyclic aromatic hydrocarbon (PAH) molecules have been considered as possible carrier of the unidentified infrared emission bands from the interstellar medium (ISM) for about thirty years. The cooling dynamics of the PAH molecules which is essential to estimate their photostability and therefore their lifetime and size distributions in the ISM, has attracted numerous theoretical and experimental studies. In recent years, electrostatic storage devices (ESD) became powerful tool to investigate the cooling regime of molecules and clusters in a large time range from microseconds to seconds. Generally speaking, the decay of the emitted neutral yields due to dissociation of molecular cations or electron detachment of anions in such experiments carries information on the internal energy of the stored molecular ions. In this thesis work, the cooling regimes of anthracene cations are studied by following the time evolution of the internal energy distribution (IED) of the stored anthracene cations. A spontaneous neutral yield curve obtained from the stored molecular ions as a function of the storage time shows three distinguishable regions. The three regions indicate different cooling regimes at corresponding storage time range, i.e., the dissociation mechanism of the molecule dominates at storage time t < 1 ms, quenching of the dissociation by radiative cooling processes occurs during 1 < t < 3 ms and radiative cooling governs at t > 3 ms
|
22 |
Dynamique de refroidissement du cation naphtalène dans un anneau de stockage électrostatique / Cooling dynamics of naphthalene cations studied in an electrostatic storage ringOrtega, Céline 25 June 2015 (has links)
L'étude des Hydrocarbures Aromatiques Polycycliques (PAH) a connu un intérêt croissant depuis une trentaine d'années, en raison notamment de leur possible présence dans le milieu interstellaire qui expliquerait l'observation des bandes d'émission IR encore non attribuées. Dans ce travail de thèse, la dynamique de refroidissement du cation naphtalène C10H8+, la plus petite molécule de la famille des PAH, est étudiée dans un anneau de stockage électrostatique, le Mini-Ring. La distribution en énergie interne des ions stockés est sondée en induisant la photo dissociation d'une fraction des ions par une excitation laser à la longueur d'onde 532 nm. La dynamique de refroidissement des cations photo-excités est observée en mesurant en fonction du temps le nombre de neutres émis par dissociation. La courbe de déclin du signal de neutres est directement reliée à la distribution en énergie interne des ions à l'instant de l'excitation laser. Cette distribution en énergie interne peut alors être déterminée à différents temps de stockage en analysant les courbes de déclin à l'aide d'un programme numérique développé pendant la thèse. L'évolution temporelle de la distribution met en évidence un processus de refroidissement rapide caractérisé par un taux de refroidissement compris entre 70 et 90 s−1 pour des énergies internes de 5.9 et 6.8 eV. Ce refroidissement rapide ne peut être expliqué par l'émission de photons infrarouges. Il est attribué à la "fluorescence de Poincaré" caractérisée par un processus de conversion interne inverse suivie de l'émission d'un photon dans le domaine du visible. Cette fluorescence de Poincaré ou fluorescence récurrente a été prédite il y a plus de 20 ans mais n'a jamais été mesurée directement à ce jour. Les taux de refroidissement mesurés lors de ce travail de thèse apportent une évidence indirecte de ce processus / The study of Polycyclic Aromatic Hydrocarbons (PAH) has been of increasing interest during the last thirty years: their possible presence in the interstellar medium is commonly invoked to explain the observation of still unassigned IR emission bands. In this thesis, the cooling dynamics of the naphthalene cations C10H8 +, the smallest molecule of the PAH family, is studied in an electrostatic storage ring, the Mini-Ring. Particularly, we consider the two main cooling processes for naphthalene cation, the dissociation and photon emission. Naphthalene molecules are ionized in an electron cyclotron resonance source (ECR), accelerated to 12 keV and then injected and stored in the Mini-Ring for several milliseconds. The internal energy distribution of the stored ions is probed by laser induced dissociation using an excitation wavelength at 532 nm. The cooling dynamics of the photo-excited cations is observed by measuring the number of emitted neutrals as a function of time. The decay curve of the neutral signal is directly related to the internal energy distribution of the ions at the excitation time. This internal energy distribution can then be determined at various storage times by analyzing the decay curves using a code developed during this thesis. The time evolution of the internal energy distribution shows a fast cooling process characterized by a cooling rate increasing from 70 to 90 s−1 for internal energies from 5.9 to 6.8 eV. This fast cooling process can’t be explained by infrared photons emission. It is attributed to the "Poincaré fluorescence " which involves an inverse internal conversion process followed by the emission of a visible photon. This fluorescence from thermally excited electron or recurrent fluorescence was predicted more than 20 years ago, but has never been measured directly up to now. The measured cooling rates in this thesis provide indirect evidence of this process
|
23 |
Enhancing Thermophotovoltaics via Selective Thermal Emitters and Radiative Thermal ManagementZhiguang Zhou (7908800) 25 November 2019 (has links)
Thermal radiation is a fundamental heat transfer process, with certain basic
aspects still not fully understood. Furthermore, tailoring its properties has potential to
affect a wide range of applications, particularly thermophotovoltaics (TPV) and radiative
cooling.
TPV converts heat into electricity using thermal radiation to illuminate a photovoltaic
diode, with no moving parts. With its realistic efficiency limit up to 50% (heat source at
1200 <sup>o</sup>C), TPV has garnered substantial interest. However, state-of-the-art TPV
demonstrations are still well below theoretical limits, because of losses from generating
and efficiently converting or recycling thermal radiation. In this thesis, tailored integrated
photonic crystal structures are numerically simulated to enhance the efficiency of solar
TPV. Next, a high-temperature thin-film Si-based selective absorber and emitter is
designed, fabricated and experimentally characterized. It exhibits great potential to open
up new applications, as it lends itself to large-scale production with substantial
mechanical flexibility and excellent spectral selectivity for extended time periods, even
when operating under high operating temperatures (600 <sup>o</sup>C) for up to 6 hours, with
partial degradation after 24 hours. To perform this high-temperature characterization, an
emittance measurement setup has been built; its performance agrees well with
numerical simulations.
Second, a unique passive cooling mechanism known as radiative cooling is developed
to reduce the operating temperature of the photovoltaic diode. The significant effect of
radiative cooling as a complement for an all-passive-cooling TPV system is proposed
and numerically analyzed under a range of conditions. Furthermore, an outdoor
experiment has been performed to demonstrate the effect of radiative cooling on a
concentrating photovoltaic system, which can potentially be applied to the thermal
management of a TPV system. In summary, this work paves the way towards the
development of reliable, quiet, lightweight, and sustainable TPV and radiatively cooled
power sources for outdoor applications.
|
24 |
Optical Studies of Cellulose-Based Materials for Spectral Design of Camouflage and Passive Cooling ApplicationsGrönlund Falk, Olivia, Valentin, Felix January 2022 (has links)
In the past few years, studies regarding new bio-based materials have led to an increased attention in the nanoscale product of cellulose, called nanocellulose. This biodegradable and renewable material has interesting physical, optical and thermal properties. The optical properties could be affected by tuning the nanostructure of the material, which makes it interesting for further investigation. The promising properties of nanocellulose can be useful in many different applications. The aim of this work was therefore to study the optical properties of nanocellulose, and to examine if the material is suitable for spectral design of camouflage or in passive cooling applications. The optical properties of a nanocellulose, specifically cellulose nanofiber (CNF), have been studied. Freestanding CNF films and CNF films deposited on glass substrates were made and characterized by spectroscopy, ellipsometry, BRDF measurements, and optical microscopy. The freestanding samples were examined with different CNF concentrations of 0.52% and 1.0%, and different thicknesses. The samples on glass substrates all had a concentration of 1.0% CNF, but with different amount deposited solution which was either drop or spin coated. The freestanding CNF samples show high transmission in the visual region and relatively high emissivity in the atmospheric windows. This implies that it can be used as an effective material for passive radiative cooling. A thicker sample could also be used to increase the emissivity in the atmospheric windows and improve the ability for passive cooling. The low reflectance, and high emissivity in the atmospheric windows can be promising for use in camouflage applications, according to earlier studies. However, the suitable properties are very dependent on the spectral response of the background. Additional measurements need to be performed and more specified scenarios are necessary to draw any further conclusions.
|
25 |
Enhancement of Solar Absorbers and Radiative Coolers via Nanostructuring and Improved Reliability and Efficiency of GaN HEMT devicesDavid J. Kortge (5930708) 03 August 2023 (has links)
<p>Management of incoming solar radiation and use of the sky as an ultimate heat sink are technological imperatives as climate change shifts our reliance from fossil fuels to sustainable sources. Selective solar absorbers are a possible route for solar harvesting as they collect the incoming radiation for process heat or space heating. Here, improvement in the performance of selective solar absorbers via photon recycling is investigated using a stepped index rugate filter. The final proposed filter when integrated with a high vacuum selective solar absorber could see an improvment in solar-thermal conversion efficiency from 13% to 30.6%. Then, a frequency selective optical filter is fabricated with uses including improvement of radiative coolers. The measured optical characteristics are compared with simulation data and found to match well.</p>
<p><br></p>
<p>The shift to sustainable sources of electricity will require an expansion of the electrical grid. The backbone of the grid for converting high voltage AC to DC, and vice versa, is power electronics. The current state-of-the-art technology is GaN HEMTs, but GaN MISHEMTs are poised to replace them since MISHEMTs reduce the gate leakage current; a deficiency of the GaN HEMT architecture. First, time dependent dielectric breakdown in GaN MISHEMTs is investigated using concurrent electrical and thermoreflectance methods. A susceptibility in the MISHEMT architecture is found and possible solutions are proposed. Then, liquid cooling of GaN HEMT PAs is explored by demonstrating integration of an X-band front end module, printed circuit board, and fluid manifold. The integration shows great promise as two-phase cooling performance improved with increasing power dissipated, while single-phase cooling performance degraded.</p>
|
26 |
APPLYING HEAT PIPES TO INSTALL NATURAL CONVECTION AND RADIATIVE COOLING ON CONCENTRATING PHOTOVOLTAICS.Saleh Abdullah Basamad Sr. (13163391) 28 July 2022 (has links)
<p> </p>
<p> </p>
<p>Concentrator photovoltaics have demonstrated greater solar energy production efficiency than previous solar electric technologies. However, recent research reveals that heat management is a significant difficulty in CPV systems, and if left unaddressed, it can have a severe influence on system efficiency and lifetime. Traditional CPV cooling relies on active methods such as forced air convection, or liquid cooling, which might lead to an extremely large parasitic power use. In addition, the moving parts of a cooling system result in a shorter lifespan and higher maintenance expenses. </p>
<p><br></p>
<p>CPV systems can boost their efficiency and lifespan by adopting passive cooling solutions. This work employed radiative cooling and natural convection to construct an efficient and cost-effective cooling system. The excess heat of a solar cell can be dispersed into space via electromagnetic waves via radiative cooling. Due to the fact that the radiative cooling power is related to the difference between the fourth powers of the solar cell and the ambient temperature, much greater cooling powers can be obtained at higher temperatures. Heat pipes were installed to act as a heat pump by transferring excessive heat from solar cells within a system to the exterior, where it can be dissipated via natural air cooling and thermal radiation. Experiments conducted in this study demonstrate that a temperature reduction of 21 ◦C was accomplished through radiative cooling and natural convection, resulting in an increase of 64 mV, or 17% in the open-circuit voltage of a GaSb solar cell.</p>
|
27 |
DURABLE RADIATIVE COOLING PAINTS FOR REDUCED GLOBAL GREENHOUSE EFFECTEmily Barber (15332044) 21 April 2023 (has links)
<p> </p>
<p>Recent developments in radiative cooling paints have shown significant promise towards commercialization of the technology. Therefore, questions have been asked as to how the durability of these paints could be evaluated and improved, as well as how these paints could impact energy use and global climate change. In this work, a paint formulation was developed using nanoplatelet hBN pigments with an MP-101 binder from SDC Technologies, Inc. This formulation shows similar reflective properties to that of an hBN acrylic formulation (97.5% and 97.9% reflectance, respectively) while boosting a water droplet contact angle of as much as 120°, proving hydrophobicity and therefore self-cleaning properties. Additionally, a comprehensive study was conducted to understand the potential impact of the radiative cooling paints on the changing global climate. Three potential impacts of the paint were discussed, including capture and utilization of CO2 into the CaCO3 paint, the reduction of HVAC usage on buildings painted with the RC paints, and net cooling of the earth due to the solar reflection and thermal emission of the paint into deep space. It was discovered that all three parts had a positive impact on the global climate, regardless of which US climate zone the representative building was in. Additionally, it was found that the paints could reduce as much as an equivalent 539 lbs CO2eq from the atmosphere for each m2 of the paint applied.</p>
|
Page generated in 0.1154 seconds