• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 17
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 132
  • 132
  • 132
  • 37
  • 35
  • 34
  • 29
  • 17
  • 16
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Precision Measurements of the Radio Background at Long Wavelengths

Patra, Nipanjana January 2014 (has links) (PDF)
The study of continuum sky background spectrum at low radio frequencies has achieved specific importance in present day observational cosmology . At these low frequencies the sky continuum is contributed by the extragalactic radio sources together with the synchrotron emission of the Milky Way as well as CMB. Following the recombination, the energy exchange between the primordial neutral hydrogen and CMB photons, during its propagation through the ”Dark ages” as well as the ”cosmic dawn” resulted in absorption and emission features in CMB spectrum which evolved with the evolution of the HI over cosmic time. Due to cosmological expansion of the Universe such spectral signatures of cosmological origin is now redshifted to low radio wavelengths. Although the peak to peak amplitudes of the same are smaller by orders of magnitude than the total galactic and extragalactic contribution at these frequencies the later is expected to be smooth over the scales of few hundred MHz. Hence, except for the extreme cases where the time scale over which such radiative transfer interaction occurred is very long and therefore the spectral fluctuations are spread over a large range of frequencies, these cosmological radiation signatures should be detectable at meter wavelengths. The duration and frequency at which such spectral signatures may occur can give constraints on the physical processes that governed the process of such energy exchange at a very early time, the history of evolution of the gas and the nature and evolution of sources of first light in the Universe. Measurements of the absolute brightness of the continuum background at meter wavelengths and detection of the spatial and spectral variations can therefore be an important probe of cosmology. In addition, measurements to date suggest that the radio background that is of extragalactic origin consists of CMB plus a power-law spectrum and has a brightness temperature of (1.2 ± 0.09) × (ν/1 GHz)−2.60±0.04 K. Surprisingly, the sky brightness corresponding to discrete radio sources detected in the deepest surveys to date account for only a fraction of the extragalactic radio background, even after excluding the CMB. Improved measurements of the radio background and, in particular, the spectrum at long wavelengths where errors are relatively larger, are important in estimating the spectrum of the unexplained part and thereby constraining the sources of this cosmic radiation. The wideband measurements at meter wavelengths pose limit on the accuracy of such measurements where the errors are relatively large. The instrument systematics, which are frequency dependent, in interaction with the sky signal may result in an incorrect estimate of the absolute sky brightness as well as may give rise to spectral features which may confuse with the true cosmological signatures in the foreground. A strategic system design with the aim of minimizing the systematics and characterization of the system non-ideal behavior can lead to the measurement accuracy with which the cosmological signatures could be detected along with the absolute measurement of the foreground. The aim of the work that constitute this thesis is precision measurement of the continuum radio emission at long wavelengths and detect the signature from the epoch of reionization in the background spectrum. A single element radio telescope system has been designed and built which is capable of useful measurement of spectral signatures of the EoR in the radio background. SARAS deployed in the Gauribidanur Observatory, about 80 km north of Bangalore in India. The design, calibration method and observation strategies developed are novel and unique, and relevant for any wideband measurements. The content of this thesis is outlined below. The Chapter 1 briefly introduces to the 21 cm cosmology. The neutral hydrogen as an cosmological probe is discussed first. The redshifted 21 cm signal and its possible use to probe the early Universe is discussed in detail. The chapter also gives a description of the redshifted 21 cm background and the EoR global signature as well as the 21 cm power spectrum. Finally an account of the recent and future experiments for detection of the global EoR signature and the EoR power spectrum are given. In the light of the science introduced in this chapter, the major aim and the work of the thesis is also summarised. In Chapter 2 the design philosophy of the SARAS spectrometer is illustrated. The basic elements of the system, the antenna, analog and the digital receiver have been described in detail. The complete configuration and the complex performance of the integrated system are detailed. For an ideal performance of such a wideband system the calibration strategies are considered and measurement equations are derived. Chapter3 addresses the most important issues of systematic effect for this wideband continuum measurement. The designed system performance deviates from its ideal due to non-idealities. The non-ideal behaviour of the real systems that are the limiting factors for a precision wideband measurement at low frequencies are thoroughly investigated. The effects of single and multiple reflections that occurs due to impedance mismatch internal to the system and results in spurious response in the measured data are considered. Within the limits of the known systematics, the system has been argued to qualify to be able to measure the EoR spectral signature in the background spectrum. Chapter 4 gives the details of the SARAS observation and description of the measurement that has been done by the SARAS spectrometer from the Gouribidanur Radio Observatory . The detailed understanding of the systematics led to the two strategic observation modes; EoR mode and RB mode, which are also discussed in this chapter. Next, the absolute calibration of the SARAS spectrometer is described following which the interference rejection algorithms, purpose developed for rejection of RFI from the SARAS data are outlined. The measured data is calibrated and the additional calibration product is derived. The data set is then modelled by modelling the sky noise and the systematic effects. In Chapter 5 the methodology of the SARAS data analysis is illustrated along with step by step analysis of the observation made in the RB mode. The model that is derived in chapter 4 is fitted to the measurements and the parameters are estimated by minimising the merit function Chi-square. The minimisation followed the downhill simplex algorithm which is outlined in this chapter. The data analysis strategy relied on the derivation of the initial values of the parameters from the measured data. The data has been fitted in hierarchy and initial guesses for subset of parameters are derived from each step of hierarchical modelling. This method of analysis is strategic and discussed in detail in this chapter. The statistical and systematic error of measurement are discussed next. Finally, the posterior probability distribution of the parameters are calculated by uniformly sampling the parameter space around the best fit values and calculating the Chi-square and the likelihood functions of the parameters. Mariginalizing the computed posterior probability distribution over the system parameters, the error on estimated sky parameter or the confidence region of the sky parameter is estimated. Chapter 6 presents the analysis identical to that presented in the Chapter 5 for the data acquired in the second observing mode, the EoR mode is presented. In this section the detection ability and the limitations of the SARAS observations, made from the Gouribidanur Radio observatory, for a useful detection of the EoR spectral signature is considered. Chapter 7 described a concept of system bandpass calibration using the time domain information that could be obtained from the voltage samples before computing the power spectrum. In the Chapter 3, the spurious periodic correlation, generated due to the internal reflections of the noise voltages is discussed in detail. If a short pulse is injected into the system via the antenna, due to internal reflections, the primary pulse in the output voltage samples would be followed by a series of delayed pulses each of which is generated by subsequent reflections internal to the system. Inspection of such pulses in the time domain could potentially provide with accurate bandpass calibration. A digital hardware is programmed and a nano second pulse generator-accumulator system is built. The performance of this system and table top demonstration of this bandpass calibration concept is presented in this chapter. This pulse injection system is used in a proposed calibration experiment in the Parkes radio telescope. The initial result of the experiment is presented in this chapter. In Chapter 8 the work carried out for this thesis is summarised. The end to end task of carrying out the background measurement by purpose building a single element radio telescope, observing with it and analysis of the data has led to a successful measurement of the background spectrum with an accuracy > 1%. The detailed understanding of the problems associated with the precision measurements and development of the measurement techniques that can overcome such problems has led to significant progress towards a successful detection of the EoR signatures. Some aspects and ideas which are understood to be essentials for such an experiment yet unexplored here due to limited time are listed in this section and the future prospcts of this work is also discussed.
122

Terrestrial radio wave propagation at millimeter-wave frequencies

Xu, Hao 05 May 2000 (has links)
This research focuses on radio wave propagation at millimeter-wave frequencies. A measurement based channel characterization approach is taken in the investigation. First, measurement techniques are analyzed. Three types of measurement systems are designed, and implemented in measurement campaigns: a narrowband measurement system, a wideband measurement system based on Vector Network Analyzer, and sliding correlator systems at 5.8+AH4AXA-mbox{GHz}, 38+AH4AXA-mbox{GHz} and 60+AH4AXA-mbox{GHz}. The performances of these measurement systems are carefully compared both analytically and experimentally. Next, radio wave propagation research is performed at 38+AH4AXA-mbox{GHz} for Local Multipoint Distribution Services (LMDS). Wideband measurements are taken on three cross-campus links at Virginia Tech. The goal is to determine weather effects on the wideband channel properties. The measurement results include multipath dispersion, short-term variation and signal attenuation under different weather conditions. A design technique is developed to estimate multipath characteristics based on antenna patterns and site-specific information. Finally, indoor propagation channels at 60+AH4AXA-mbox{GHz} are studied for Next Generation Internet (NGI) applications. The research mainly focuses on the characterization of space-time channel structure. Multipath components are resolved both in time of arrival (TOA) and angle of arrival (AOA). Results show an excellent correlation between the propagation environments and the channel multipath structure. The measurement results and models provide not only guidelines for wireless system design and installation, but also great insights in millimeter-wave propagation. / Ph. D.
123

Numerical modelling of ultra low frequency waves in Earth's magnetosphere

Elsden, Tom January 2016 (has links)
Ultra Low Frequency (ULF) waves are a ubiquitous feature of Earth's outer atmosphere, known as the magnetosphere, having been observed on the ground for almost two centuries, and in space over the last 50 years. These waves represent small oscillations in Earth's magnetic field, most often as a response to the external influence of the solar wind. They are important for the transfer of energy throughout the magnetosphere and for coupling different regions together. In this thesis, various features of these oscillations are considered. A detailed background on the history and previous study of ULF waves relevant to our work is given in the introductory chapter. In the following chapters, we predominantly use numerical methods to model ULF waves, which are carefully developed and thoroughly tested. We consider the application of these methods to reports on ground and spaced based observations, which allows a more in depth study of the data. In one case, the simulation results provide evidence for an alternative explanation of the data to the original report, which displays the power of theoretical modelling. An analytical model is also constructed, which is tested on simulation data, to identify the incidence and reflection of a class of ULF wave in the flank magnetosphere. This technique is developed with the aim of future applications to satellite data. Further to this, we develop models both in Cartesian and dipole geometries to investigate some of the theoretical aspects of the coupling between various waves modes. New light is shed on the coupling of compressional (fast) and transverse (Alfvén) magnetohydrodynamic (MHD) wave modes in a 3D dipole geometry. Overall, this thesis aims to develop useful numerical models, which can be used to aid in the interpretation of ULF wave observations, as well as probing new aspects of the existing wave theory.
124

Pulsar scattering and the ionized interstellar medium

Geyer, Marisa January 2017 (has links)
Fifty years after the discovery of the first pulsating neutron star, the field of pulsar science has grown into a multidisciplinary research field, working to address a wide range of problems in astrophysics - from stellar evolution models to high precision tests of General Relativity to analysing the detailed structure of the Interstellar Medium in the Milky Way. Over 2500 Galactic pulsars have been discovered. The next generation telescopes, such as the Square Kilometre Array, promise to discover the complete observable Milky Way population, of several tens of thousands, over the next decade. These point sources in the sky have extreme properties, with matter densities comparable to that of an atomic nucleus, and surface magnetic fields a trillion times stronger than Earth's magnetic field. Observationally, the most valuable property is their rotational stability - allowing us to anticipate and sum their beamed radio emission, as the pulsar spins around its axis, on millisecond to second timescales. The detected radio wave signals carry with them information of the ionised interstellar medium (IISM) paths they traveled along. The imprints reveal that the pulsar signals we detect travel along multiple paths. While the bulk of the emitted signal propagates along a straight line, we also receive delayed emission scattered through small angles, back into our line of sight. This scattering is caused by fluctuations in the free electron densities of the IISM. The impact of these inhomogeneities is exaggerated at low observing frequencies, where averaged pulsar profiles are observed to be broadened, and showcase exponential scattering tails characterised by a scattering timescale &gcy;. Simple theoretical models predict a power law dependence of &gcy; on frequency, with a spectral index &alpha; = 4. Despite these predictions, my analysis of pulsar data in this thesis, reveal a more complex frequency dependence on &gcy;. I investigate the scattering characteristics of a set of pulsars observed by the Low Frequency Array (LOFAR), at 110~MHz to 190~MHz. These data are ideal datasets for accurate studies of pulsar scattering, providing broad frequency bands at low frequencies. I find anomalously low power law spectral indices, &alpha;, describing the frequency dependence of &gcy;. These indices are likely due to anisotropic scattering mechanisms or small scattering clouds in the IISM. To conduct effective data analysis, I develop scattering fitting techniques by first analysing IISM effects on simulated pulsar data. I investigate the effects of two different types of scattering mechanisms, isotropic and anisotropic scattering, and consider each of their particular frequency-dependent impacts on pulsar data. The work on simulated data provides a robust fitting technique for extracting scattering parameters and a framework for the interpretation of the LOFAR data used in this study. The fitting technique simultaneously models scattering effects and standard frequency-dependent pulse profile evolution. I present results for 13 pulsars with simple pulse shapes, and find that &gcy;, associated with scattering by a single thin screen, has a power law dependence on frequency with &alpha; ranging from 1.50 to 4.0. My results show that extremely anisotropic scattering can cause low &alpha; measurements. The anomalous scattering properties can also be caused by the presence of small scattering clumps in the IISM, as opposed to the conventionally modelled large scattering screens. Evidence for both anisotropic scattering and small scattering clouds with high electron densities come from other areas of research. Indications of the anisotropic nature of the local IISM mostly come from high resolution pulsar scintillation analyses, while evidence for high density scattering clouds is often based on extreme scattering events measured through quasar observations. My results suggest that these anomalous scattering properties are more prevalent than formerly thought, prompting us to reconsider the physical conditions of the IISM, where traditionally high electron densities are reserved for H<sub>II</sub> regions and anisotropy is not modelled. High quality, low frequency pulsar data, where anomalous propagation effects become measurable, are a valuable addition in assisting us to distinguish between the different physical mechanisms that can be at play. The more complex these IISM characteristics reveal themselves to be, the harder it will be to disentangle intrinsic profile emission from IISM propagation imprints. Successfully separating these effects, however, promises to improve our understanding of the intrinsic pulsar radio emission - a process that is still poorly understood.
125

Predição e medição de sinais de TV digital na faixa de UHF em ambientes internos

Fernandes, William Douglas Costa 14 December 2012 (has links)
Este trabalho apresenta uma análise da propagação de sinais de TV Digital na faixa de UHF em ambientes internos. A partir da comparação de alguns modelos de propagação interna e externa referenciados na literatura para outras faixas de frequência e aplicação, um algoritmo foi desenvolvido com a finalidade de gerar um mapa de cobertura de sinal que exibe a potência de recepção no ambiente interno. Estas simulações foram comparadas com medidas em campo a partir de dois estudos de caso. O primeiro avalia a cobertura de sinal em um andar inteiro de um prédio e o segundo no interior de uma sala e comprovou-se que os modelos de propagação que foram estendidos à faixa de UHF podem ser empregados com precisão para se determinar o nível de recepção do sinal de TV digital. / This work presents an analysis of signal propagation of Digital TV on the UHF range in indoor environments. Based on the comparison of some indoor and outdoor propagation models described on the literature, an algorithm was developed with the aim of generating a signal coverage map that exhibits the reception power on the indoor environment. These simulations were compared with field measurements divided in two case studies. The first one evaluates the signal coverage in an entire floor of one building and the second one inside a single room. It was proved that the propagation models that were extended to the UHF range can be used with high accuracy to determine the reception power level of the digital TV signal.
126

Predição e medição de sinais de TV digital na faixa de UHF em ambientes internos

Fernandes, William Douglas Costa 14 December 2012 (has links)
Este trabalho apresenta uma análise da propagação de sinais de TV Digital na faixa de UHF em ambientes internos. A partir da comparação de alguns modelos de propagação interna e externa referenciados na literatura para outras faixas de frequência e aplicação, um algoritmo foi desenvolvido com a finalidade de gerar um mapa de cobertura de sinal que exibe a potência de recepção no ambiente interno. Estas simulações foram comparadas com medidas em campo a partir de dois estudos de caso. O primeiro avalia a cobertura de sinal em um andar inteiro de um prédio e o segundo no interior de uma sala e comprovou-se que os modelos de propagação que foram estendidos à faixa de UHF podem ser empregados com precisão para se determinar o nível de recepção do sinal de TV digital. / This work presents an analysis of signal propagation of Digital TV on the UHF range in indoor environments. Based on the comparison of some indoor and outdoor propagation models described on the literature, an algorithm was developed with the aim of generating a signal coverage map that exhibits the reception power on the indoor environment. These simulations were compared with field measurements divided in two case studies. The first one evaluates the signal coverage in an entire floor of one building and the second one inside a single room. It was proved that the propagation models that were extended to the UHF range can be used with high accuracy to determine the reception power level of the digital TV signal.
127

[en] EFFECTS OF DIFFERENT URBAN ENVIRONMENTS ON THE PROPAGATION OF SIGNALS FROM PERSONAL COM. SYSTEMS BASED ON NON GEOSTATIONARY ORBIT SATELLITE NETWORKS / [pt] EFEITOS DE DIFERENTES REGIÕES URBANAS NA PROPAGAÇÃO DE SINAIS DE SISTEMAS DE COMUNICAÇÕES PESSOAIS BASEADOS EM REDES DE SATÉLITES NÃO GEOESTACIONÁRIOS

PEDRO PAULO SUZANO XAVIER 25 July 2005 (has links)
[pt] À medida que os sistemas de comunicações móveis e de rádiodeterminação que utilizam satélites não geo-estacionários de órbitas baixas e médias ganham importância no cenário mundial de comunicações, torna-se cada vez mais necessário o conhecimento do ambiente de rádio- propagação, seu comportamento e a inter-relação entre os seus diversos aspectos e parâmetros. Em função de características dos dispositivos de comunicações utilizados em tais sistemas, como transmissores de baixa potência e antenas de baixo ou médio ganho, esses sistemas operam com margens de desvanecimento relativamente baixas. A literatura descreve uma técnica de simulação para estimação de margens de desvanecimento em diversos tipos de ambiente baseada em fotografias obtidas com a utilização de câmaras providas de lentes grande-angulares. Na presente dissertação, apresenta-se uma variante da metodologia original, onde se propõe a substituição da base de dados original por mapas digitais da topografia, combinada com bases de dados de edificações e de um modelo para a vegetação. Apresenta-se, ainda, a estrutura da simulação computacional utilizada para processar e analisar tais arquivos, os dados de entrada da simulação e um módulo que representa a dinâmica orbital, utilizado para prever as posições dos satélites. Finalmente, apresentam-se e analisam-se os resultados obtidos com a presente simulação. Analisa-se, também, a influência da variação dos diversos fatores que compõem os dados de entrada da simulação nos resultados obtidos. / [en] As land-mobile satellite systems and radio-determination systems get more importance in the global telecommunications scenario, it becomes even more necessary to understand the radio-propagation environment: its behavior and the inter-relationship between its several aspects and physical parameters. Due to the communications devices characteristics used in these systems, such as low-power transmitters and low/medium gain antennas, such systems operate with relatively low fade margins. The technical literature describes a simulation technique to estimate fade margins in various types of environments, based on the processing of photographs acquired by digital cameras utilizing fisheye lenses. In this dissertation, an alternate methodology is presented. It is proposed that the original database of photographs be substituted by digital elevation models combined with building databases and a vegetation model. The computer simulation structure used to process and analyzes these databases, the input simulation data, and an orbital dynamics model used to update the satellite positions are also described. Finally, the obtained simulation results are presented and analyzed. It also discusses the influence of several factors which characterize different urban regions and non geostationary orbit satellite networks in the obtained results.
128

A novel empirical model of the k-factor for radiowave propagation in Southern Africa for communication planning applications

Palmer, Andrew J 22 September 2004 (has links)
The objective of this study was to provide an adequate model of the k-factor for scientific radio planning in South Africa for terrestrial propagation. An extensive literature survey played an essential role in the research and provided verification and confirmation for the novelty of the research on historical grounds. The approach of the research was initially structured around theoretical analysis of existing data, which resulted from the work of J. W. Nel. The search for analytical models was extended further to empirical studies of primary data obtained from the South African Weather Service. The methodology of the research was based on software technology, which provided new tools and opportunities to process data effectively and to visualise the results in an innovative manner by a means of digital terrain maps (DTMs) and spreadsheet graphics. MINITAB / Thesis (PhD)--University of Pretoria, 2005. / Electrical, Electronic and Computer Engineering / unrestricted
129

Measured and Modeled Time and Angle Dispersion Characteristics of the 1.8 GHz Peer-to-Peer Radio Channel

Patwari, Neal 08 May 1999 (has links)
In an extensive outdoor propagation study, low antenna heights of 1.7 m are used at both the transmitter and the receiver to measure over 3500 wideband power-delay profiles (PDPs) of the channel for a peer-to-peer communications system. Rural and urban areas are studied in 22 different transmitter-receiver links. The results are used to characterize the narrowband path loss, mean delay, root-mean-square (RMS) delay spread, and timing jitter of the peer-to-peer wideband channel. Small-scale fading characteristics are measured in detail by measuring and analyzing 160 PDPs within each local area. This thesis shows the measurement setup for the calculation of fading rate variance and angular spread and reports the first known attempt to calculate angular spread from track power measurements. New analysis presented in this thesis shows the effect of measurement error in the calculation of angular spread. The expected characteristics of angular spread are derived using two different angle-of-arrival (AOA) models from the literature. Measurement results show initial validation of Durgin's angular spread theory. A new measurement-based algorithm for simulating wideband fading processes is developed and implemented. This simulation technique shows promise in the simulation of high-bit rate peer-to-peer radio communication systems. / Master of Science
130

Simulations of diversity techniques for urban UAV data links

Poh, Seng Cheong Telly 12 1900 (has links)
Approved for public release, distribution is unlimited / In urbanized terrain, radiowave propagation is subjected to fading on large-scales and smallscales that would impede on the quality and reliability of data link transmission. This would have implications in many military applications. One example is the performance of unmanned aerial vehicle (UAV) data and communications links in complex urban environments. The purpose of this research is to study the effectiveness of diversity techniques on the performance of urban UAV data and communications links. The techniques investigated were spatial, polarization, and angle diversities. The ray tracing software, Urbana Wireless Toolset, was used in the modeling and simulation process. The various combinations of diversity techniques were simulated using a realistic urban city model. For the few transmit-receive geometries examined, it was found that angle diversity with a directive antenna provided the greatest increase in signal strength relative to the no diversity case. / Civilian, Singapore DOD

Page generated in 0.1024 seconds