• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 26
  • 10
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 127
  • 27
  • 25
  • 24
  • 21
  • 20
  • 17
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

From Invasive Neurosensing to Noninvasive Radiometric Core and Brain Monitoring

Tisdale, Katrina 27 September 2022 (has links)
No description available.
72

Microwave Radiometer (MWR) Evaluation of Multi-Beam Satellite Antenna Boresight Pointing Using Land-Water Crossings, for the Aquarius/SAC-D Mission

Clymer, Bradley 01 January 2015 (has links)
This research concerns the CONAE Microwave Radiometer (MWR), on board the Aquarius/SAC-D platform. MWR's main purpose is to provide measurements that are simultaneous and spatially collocated with those of NASA's Aquarius radiometer/scatterometer. For this reason, knowledge of the MWR antenna beam footprint geolocation is crucial to mission success. In particular, this thesis addresses an on-orbit validation of the MWR antenna beam pointing, using calculated MWR instantaneous field of view (IFOV) centers, provided in the CONAE L-1B science data product. This procedure compares L-1B MWR IFOV centers at land/water crossings against high-resolution coastline maps. MWR IFOV locations versus time are computed from knowledge of the satellite's instantaneous location relative to an earth-centric coordinate system (provided by on-board GPS receivers), and a priori measurements of antenna gain patterns and mounting geometry. Previous conical scanning microwave radiometer missions (e.g., SSM/I) have utilized observation of rapid change in brightness temperatures (T_B) to estimate the location of land/water boundaries, and subsequently to determine the antenna beam-pointing accuracy. In this thesis, results of an algorithm to quantify the geolocation error of MWR beam center are presented, based upon two-dimensional convolution between each beam's gain pattern and land-water transition. The analysis procedures have been applied to on-orbit datasets that represent land-water boundaries bearing specific desirable criteria, which are also detailed herein. The goal of this research is to gain a better understanding of satellite radiometer beam-pointing error and thereby to improve the geolocation accuracy for MWR science data products.
73

Simulation And Study Of The Stokes Vector In A Precipitating Atmosphere

Adams, Ian 01 January 2007 (has links)
Precipitation is a dominating quantity in microwave radiometry. The large emission and scattering signals of rain and ice, respectively, introduce large contributions to the measured brightness temperature. While this allows for accurate sensing of precipitation, it also results in degraded performance when retrieving other geophysical parameters, such as near-surface ocean winds. In particular, the retrieval of wind direction requires precise knowledge of polarization, and nonspherical particles can result in a change in the polarization of incident radiation. The aim of this dissertation is to investigate the polarizing effects of precipitation in the atmosphere, including the existence of a precipitation signal in the third Stokes parameter, and compare these effects with the current sensitivities of passive wind vector retrieval algorithms. Realistic simulated precipitation profiles give hydrometeor water contents which are input into a vector radiative transfer model. Brightness temperatures are produced within the model using a reverse Monte Carlo method. Results are produced at three frequencies of interest to microwave polarimetry, 10.7 GHz, 18.7 GHz, and 37.0 GHz, for the first 3 components of the Stokes vector.
74

Development Of An Improved Microwave Ocean Surface Emissivity Radiative Transfer Model

El-Nimri, Salem 01 January 2010 (has links)
An electromagnetic model is developed for predicting the microwave blackbody emission from the ocean surface over a wide range of frequencies, incidence angles, and wind vector (speed and direction) for both horizontal and vertical polarizations. This ocean surface emissivity model is intended to be incorporated into an oceanic radiative transfer model to be used for microwave radiometric applications including geophysical retrievals over oceans. The model development is based on a collection of published ocean emissivity measurements obtained from satellites, aircraft, field experiments, and laboratory measurements. This dissertation presents the details of methods used in the ocean surface emissivity model development and comparisons with current emissivity models and aircraft radiometric measurements in hurricanes. Especially, this empirically derived ocean emissivity model relates changes in vertical and horizontal polarized ocean microwave brightness temperature measurements over a wide range of observation frequencies and incidence angles to physical roughness changes in the ocean surface, which are the result of the air/sea interaction with surface winds. Of primary importance are the Stepped Frequency Microwave Radiometer (SFMR) brightness temperature measurements from hurricane flights and independent measurements of surface wind speed that are used to define empirical relationships between C-band (4 - 7 GHz) microwave brightness temperature and surface wind speed. By employing statistical regression techniques, we develop a physical-based ocean emissivity model with empirical coefficients that depends on geophysical parameters, such as wind speed, wind direction, sea surface temperature, and observational parameters, such as electromagnetic frequency, electromagnetic polarization, and incidence angle.
75

Hurricane Wind Speed And Rain Rate Measurements Using The Airborne Hurricane Imaging Radiometer (hirad)

Amarin, Ruba 01 January 2010 (has links)
This dissertation presents results for an end-to-end computer simulation of a new airborne microwave remote sensor, the Hurricane Imaging Radiometer, HIRAD, which will provide improved hurricane surveillance. The emphasis of this research is the retrieval of hurricane-force wind speeds in the presence of intense rain and over long atmospheric slant path lengths that are encountered across its wide swath. Brightness temperature (Tb) simulations are performed using a forward microwave radiative transfer model (RTM) that includes an ocean surface emissivity model at high wind speeds developed especially for HIRAD high incidence angle measurements and a rain model for the hurricane environment. Also included are realistic sources of errors (e.g., instrument NEDT, antenna pattern convolution of scene Tb, etc.), which are expected in airborne hurricane observations. Case studies are performed using 3D environmental parameters produced by numerical hurricane models for actual hurricanes. These provide realistic 'nature runs' of rain, water vapor, clouds and surface winds from which simulated HIRAD Tb's are derived for various flight tracks from a high altitude aircraft. Using these simulated HIRAD measurements, Monte Carlo retrievals of wind speed and rain rate are performed using available databases of sea surface temperatures and climatological hurricane atmospheric parameters (excluding rain) as a priori information. Examples of retrieved hurricane wind speed and rain rate images are presented, and comparisons of the retrieved parameters with the numerical model data are made. Statistical results are presented over a broad range of wind and rain conditions and as a function of path length over the full swath.
76

Achieving Efficient Spectrum Usage in Passive and Active Sensing

Wang, Huaiyi 18 May 2017 (has links)
No description available.
77

Satellite Altimetry And Radiometry for Inland Hydrology, Coastal Sea-Level And Environmental Studies

Tseng, Kuo-Hsin 28 August 2012 (has links)
No description available.
78

Mitigation of Interference From Iridium Satellites by Parametric Estimation and Subtraction

Shahriar, Chowdhury 12 January 2007 (has links)
Radio astronomy is the science of observing the universe at radio frequencies. In recent years, radio astronomy has faced a growing interference problem as radio frequency (RF) bandwidth has become an increasingly scarce commodity. Communication systems such as Earth orbiting communication satellites creates severe interference to the radio telescopes. This thesis proposes an algorithm to mitigate the radio frequency interference (RFI) from the Iridium satellite system. A technique is presented here to detect the downlink signal of Iridium, estimate the parameters of the signal, synthesize the noise-free version of the signal and finally subtract the recreated signal from the radio telescope output. Using both simulated and real data captured by a radio telescope testbed, we demonstrate that for Iridium bursts with 20 dB signal to noise power ratio (SNR), the proposed algorithm achieves more than 15 dB cancellation. The method proposed here can be implemented using present-day digital signal processing hardware and software. A performance analysis of this proposed cancellation scheme in the radio astronomy RFI mitigation regime is presented. / Master of Science
79

Thermal Analysis of the Detector in the Radiation Budget Instrument (RBI)

Pfab, Jonathan Francis 06 February 2018 (has links)
Earth radiation budget instruments are devices designed to study global climate change. These instruments use telescopes embarked on low-earth-orbit satellites to measure Earth emitted and reflected solar radiation. Radiation is sensed as temperature changes caused by radiation absorbed during scans of the earth on a delicate gold-black coated detector. This work is part of a larger effort to develop an end-to-end dynamic electro-thermal model, based on first-principles, for the next generation of earth radiation budget instruments, the Radiation Budget Instrument (RBI). A primary objective of this effort is to develop a numerical model of the detector to be used on RBI. Specifically, the sensor model converts radiation arriving at the detector, collimated and focused through telescopes, into sensible heat; thereby producing a voltage. A mathematical model characterizing this sensor is developed. Using a MATLAB algorithm, an implicit finite-volume scheme is implemented to determine the model solution. Model parameters are tuned to replicate experimental data using a robust parameter estimation scheme. With these model parameters defined, the electro-thermal sensor model can be used, in conjunction with the remaining components of the end-to-end model, to provide insight for future interpretation of data produced by the RBI. / Master of Science / Earth radiation budget instruments are devices designed to study global climate change. These instruments use telescopes embarked on low-earth-orbit satellites to measure radiation exiting the atmosphere of the Earth. As the atmospheric science community works to design and develop the next generation of these instruments, a need for a model capable of simulating operating performance has arisen. This work is part of a larger effort to develop a complete model for the next generation of Earth radiation budget instruments, the Radiation Budget Instrument (RBI). A primary objective of this effort is to develop a model of a detector to be used on the RBI. The modelling techniques used to characterize the detector are presented in this work. Once the model has been developed, optimal model parameters are determined to tune the model. With these model parameters defined, the detector model can be used, in conjunction with the remaining pieces of the overall end-to-end model, to provide insight for future interpretation of data produced by the RBI.
80

Rejoindre les nano et macro mondes : la mesure des propriétés thermiques utilisant la microscopie thermique et la radiométrie photothermique / Bridging the nano- and macro- worlds : thermal property measurement using scanning thermal microscopy and photothermal radiometry

Jensen, Colby 30 May 2014 (has links)
Dans les applications nucléaires, les propriétés des matériaux peuvent subir des modifications importantes en raison de l'interaction destructive avec l'irradiation de particules au niveau des microstructures, qui affectent les propriétés globales. L'un des défis associés aux études de matériaux irradiés par des ions, c'est que la couche concernée, ou la profondeur de pénétration, est généralement très mince (0,1-100 um). Cette étude élargit la base des connaissances actuelles en matière de transport thermique dans les matériaux irradiés par des ions, en utilisant une approche expérimentale multiéchelles avec des méthodes basées sur des ondes thermiques. D'une manière pas encore explorée auparavant, quatre méthodes sont utilisées pour caractériser la couche irradiée par des protons dans ZrC : la microscopie thermique à balayage (SThM), la radiométrie photothermique (PTR) avec détection sur la face avant et balayage spatial, la thermographie infrarouge lock-In (IRT), et la PTR tomographique avec balayage en fréquence. Pour la première fois, le profil de conductivité thermique en profondeur d'un échantillon irradié est mesuré directement. Les profils obtenus par chacune des méthodes d'analyse spatiale sont comparés les uns aux autres et à la prévision numérique du profil endommagé. La nature complémentaire des différentes techniques valide le profil mesuré et la dégradation constatée de la conductivité thermique de l'échantillon de ZrC. / In nuclear applications, material properties can undergo significant alteration due to destructive interaction with irradiating particles at microstructural levels that affect bulk properties. One of the challenges associated with studies of ion-Irradiated materials is that the affected layer, or penetration depth, is typically very thin (~0.1-100 μm). This study expands the current knowledge base regarding thermal transport in ion-Irradiated materials through the use of a multiscaled experimental approach using thermal wave methods. In a manner not previously explored, four thermal wave methods are used to characterize the proton-Irradiated layer in ZrC including scanning thermal microscopy (SThM), spatial-Scanning front-Detection photothermal radiometry (PTR), lock-In IR thermography (lock-In IRT), and tomographic, frequency-Based PTR. For the first time, the in-Depth thermal conductivity profile of an irradiated sample is measured directly. The profiles obtained by each of the spatial scanning methods are compared to each other and the numerical prediction of the ion-Damage profile. The complementary nature of the various techniques validates the measured profile and the measured degradation of thermal conductivity in the ZrC sample.

Page generated in 0.0677 seconds