• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 23
  • 17
  • 13
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 41
  • 37
  • 37
  • 25
  • 21
  • 20
  • 20
  • 19
  • 19
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mieux connaître la distribution spatiale des pluies améliore-t-il la modélisation des crues ? Diagnostic sur 181 bassins versants français / Can we improve streamflow modeling by using higher resolution rainfall information? Diagnostic test on 181 french watersheds

Lobligeois, Florent 24 March 2014 (has links)
Les modèles hydrologiques sont des outils indispensables pour calculer les débits a l’exutoire des bassins versants, la gestion des aménagements hydrauliques ou encore la prévision et la prévention des inondations. Les précipitations représentent la variable climatique principale à l’origine des débits des cours d’eau qui s’écoulent au sein d’un bassin versant. De ce fait, la réponse hydrologique du bassin est fortement dépendante de la représentativité des données d’entrée de précipitation.Les radars météorologiques, qui permettent aujourd’hui d’accéder a des mesures a haute résolution spatiale et temporelle des champs de précipitation, sont de plus en plus utilises dans le domaine de la prévision, pour le suivi des situations hydrométéorologiques. Cependant, la mesure des précipitations par radar est entachée d’erreurs qui peuvent affecter gravement la qualité des simulations de débit. De ce fait, l’utilisation des données de précipitations a haute résolution spatiale pour la modélisation hydrologique est souvent limitée par rapport a l’utilisation des données pluviométriques.Récemment, Météo-France a développe une réanalyse des lames d’eau au pas de temps horaire, sur une durée de 10 ans, en combinant l’ensemble des données de précipitation radar et pluviométriques : les mesures radars ont été corrigées et étalonnées avec le réseau de mesure au sol horaire et journalier. Dans cette thèse, nous proposons d’étudier l’intérêt de cette nouvelle base de données à haute résolution spatiale pour la modélisation pluie-débit.Dans un premier temps, nous avons développe et valide un modèle hydrologique semi-distribue qui a la capacité de fonctionner pour différentes résolutions spatiales, de la représentation globale jusqu’a une discrétisation spatiale très fine des bassins. Dans un deuxième temps, l’impact de la résolution spatiale des données d’entrée de précipitation sur la simulation des débits a été analysé. L’apport de l’information radar pour l’estimation des précipitations a été évalue par rapport a une utilisation exclusive des pluviomètres, par le biais de la modélisation pluie-débit en termes de précision des débits a l’exutoire des bassins. Enfin, le modèle semi-distribue TGR a été comparé avec le modèle global GRP actuellement opérationnel dans les Services de Prévision des Crues. L’originalité de notre travail réside sur l’utilisation de données d’observation sur un large échantillon de 181 bassins versants français représentant une grande diversité de tailles et conditions climatiques, ce qui nous permet d’apporter un diagnostic robuste et des éléments de réponse sur les problématiques scientifiques traitées. / Hydrologic models are essential tools to compute the catchment rainfall-runoff response required for river management and flood forecast purposes. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. In this context, the sensitivity of runoff hydrographs to the spatial variability of forcing data is a major concern of researchers. However, results from the abundant literature are contrasted and it is still difficult to reach a clear consensus.Weather radar is considered to be helpful for hydrological forecasting since it provides rainfall estimates with high temporal and spatial resolution. However, it has long been shown that quantitative errors inherent to the radar rainfall estimates greatly affect rainfall-runoff simulations. As a result, the benefit from improved spatial resolution of rainfall estimates is often limited for hydrological applications compared to the use of traditional ground networks.Recently, Météo-France developed a rainfall reanalysis over France at the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Here we propose a framework to evaluate the improvement in streamflow simulation gained by using this new high resolution product.First, a model able to cope with different spatial resolutions, from lumped to semi-distributed, was developed and validated. Second, the impact of spatial rainfall resolution input on streamflow simulation was investigated. Then, the usefulness of spatial radar data measurements for rainfall estimates was compared with an exclusive use of ground raingauge measurements and evaluated through hydrological modelling in terms of streamflow simulation improvements. Finally, semi-distributed modelling with the TGR model was performed for flood forecasting and compared with the lumped forecasting GRP model currently in use in the French flood forecast services. The originality of our work is that it is based on actual measurements from a large set of 181 French catchments representing a variety of size and climate conditions, which allows to draw reliable conclusions.
92

An adaptive hydrological model for multiple time-steps : diagnostics and improvements based on fluxes consistency / Un modèle hydrologique adaptatif à différents pas de temps : diagnostic et améliorations basés sur la cohérence des flux

Ficchi, Andrea 27 February 2017 (has links)
Cette thèse vise à explorer la question du changement d'échelle temporelle en modélisation hydrologique conceptuelle. Les principaux objectifs sont : (i) étudier les effets du changement du pas de temps sur les performances, les paramètres et la structure des modèles hydrologiques ; (ii) mettre au point un modèle pluie-débit applicable à différents pas de temps. Notre point de départ est le modèle global journalier GR4J, développé à Irstea. Ce modèle a été choisi comme le modèle de référence à adapter à d'autres résolutions plus fines, jusqu'à des pas de temps infra-horaires, en suivant une approche descendante. Pour nos tests, nous avons construit une base de données de 240 bassins versants non influencés en France, à différents pas de temps allant de 6 minutes à 1 jour, en utilisant: (i) les données pluviométriques à 6 minutes et la réanalyse des lames d'eau journalières à plus haute résolution spatiale ; (ii) les données de température journalière pour le calcul de l'évapotranspiration potentielle ; (iii) les données hydrométriques à pas de temps variable. Nous avons étudié l'impact de la distribution temporelle des entrées sur les performances du modèle en se focalisant sur la simulation de crue, sur la base de 2400 événements. Ensuite, notre évaluation du modèle a porté sur l'analyse de la cohérence des flux internes du modèle à différents pas de temps, afin d'assurer une performance satisfaisante à travers un fonctionnement du modèle cohérent. Notre diagnostic du modèle nous a permis d'identifier une amélioration de la structure du modèle à différents pas de temps infra-journaliers basée sur la complexification de la composante d'interception du modèle. / This thesis aims at exploring the question of temporal scaling in lumped conceptual hydrological modelling. The main objectives of the thesis are to: (i) study the effects of varying the modelling time step on the performance, parameters and structure of hydrological models; (ii) develop a hydrological model operating at different time steps, from daily to sub-hourly, through a unified, robust and coherent modelling framework at different time scales. Our starting point is the chain of conceptual rainfall-runoff models called ‘GR’, developed at Irstea, and in particular the daily ‘GR4J’ lumped model. The GR4J model will be the baseline model to be effectively downscaled up to sub-hourly time steps following a top-down approach. An hourly adaptation of this model had already been proposed in previous research studies, but some questions on the optimality of the structure at sub-daily time steps were still open. This thesis builds on these previous studies on the hourly model and responds to the operational expectations of improving and adapting the model at multiple sub-daily and sub-hourly time steps, which is particularly interesting for flood forecasting applications. For our modelling tests, we built a database of 240 unregulated catchments in metropolitan France, at multiple time steps, from 6-minute to 1 day, using fine time step hydro-climatic datasets available: (i) 6-min rain gauges and higher spatial-density daily reanalysis data for precipitation; (ii) daily temperature data for potential evapotranspiration (making assumptions on sub-daily patterns); (iii) sub-hourly variable time step streamflow data. We investigated the impact of the inputs temporal distribution on model outputs and performance in a flood simulation perspective based on 2400 selected flood events. Then our model evaluation focused on the consistency of model internal fluxes at different time steps, in order to ensure obtaining a satisfactory model performance by a coherent model functioning at multiple time steps. Our model diagnosis led us to identify and test a significant improvement of the model structure at sub-daily time steps based on the complexification of the interception component of the model. Thus, we propose a new version of the model at multiple sub-daily time steps, with the addition of an interception store without extra free parameters. Our tests also confirm the suitability at multiple time steps of a modified groundwater exchange function proposed earlier, leading to overall improved model accuracy and coherence.
93

Soil Characteristics Estimation and Its Application in Water Balance Dynamics

Chen, Liping 12 1900 (has links)
This thesis is a contribution to the work of the Texas Environmental Observatory (TEO), which provides environmental information from the Greenbelt Corridor (GBC) of the Elm Fork of the Trinity River. The motivation of this research is to analyze the short-term water dynamic of soil in response to the substantial rainfall events that occurred in North Texas in 2007. Data collected during that year by a TEO soil and weather station located at the GBC includes precipitation, and soil moisture levels at various depths. In addition to these field measurements there is soil texture data obtained from lab experiments. By comparing existing water dynamic models, water balance equations were selected for the study as they reflect the water movement of the soil without complicated interrelation between parameters. Estimations of water flow between soil layers, infiltration rate, runoff, evapotranspiration, water potential, hydraulic conductivity, and field capacity are all obtained by direct and indirect methods. The response of the soil at field scale to rainfall event is interpreted in form of flow and change of soil moisture at each layer. Additionally, the analysis demonstrates that the accuracy of soil characteristic measurement is the main factor that effect physical description. Suggestions for model improvement are proposed. With the implementation of similar measurements over a watershed area, this study would help the understanding of basin-scale rainfall-runoff modeling.
94

Contribution à la prévision des crues sur le bassin du Lez : modélisation de la relation pluie-débit en zone karstique et impact de l'assimilation de débits / Improving flood forecasting in the Lez Catchment : modeling the rainfall-runoff relationship in karstic regions and the impact of assimilating discharge data

Coustau, Mathieu 13 December 2011 (has links)
Les crues « éclair » parfois dévastatrices qui touchent les bassins versants méditerranéens du Sud de la France sont difficiles à anticiper. Leur prévision passe par l'utilisation de modèles pluie-débit, dont l'efficacité est encore limitée par les incertitudes liées notamment à la variabilité spatiale des pluies méditerranéennes et à la caractérisation de l'état hydrique initial des hydrosystèmes. Dans le cas de bassins karstiques, à ces incertitudes s'ajoutent celles liées à la dynamique des aquifères et à leur rôle sur la formation des crues. La première partie de ce travail de thèse propose un modèle pluie-débit horaire, distribué, événementiel et parcimonieux pour reproduire les crues « éclair » à l'exutoire du bassin karstique du Lez (Montpellier) de 114 km2. Le modèle est évalué non seulement sur la qualité des simulations de débits mais aussi sur la qualité de son initialisation obtenu grâce à une relation entre sa condition initiale et divers indicateurs de l'état hydrique de l'hydrosystème. Calibré sur 21 épisodes de crues, le modèle fournit des simulations satisfaisantes, et sa condition initiale est significativement corrélée à l'indice d'humidité Hu2 du modèle SIM de Météo-France ou à la piézométrie dans l'aquifère du Lez. Les pluies mesurées par radar en début d'automne sont de bonne qualité et conduisent à une amélioration des simulations de débit et de l'estimation de la condition initiale du modèle. En revanche, les pluies mesurées par radar en fin d'automne sont de moindre qualité et n'améliorent pas les simulations. Face aux incertitudes liées à la paramétrisation du modèle ou à l'estimation des pluies radar, la deuxième partie du travail de thèse analyse l'apport de l'assimilation des débits observés pour corriger en temps réel les paramètres les plus sensibles du modèle et notamment sa condition initiale ou les pluies radar en entrée du modèle. La procédure d'assimilation de données a été mise en place à l'aide du coupleur PALM, qui permet de relier modèle hydrologique à l'algorithme d'assimilation. La correction de la condition initiale du modèle permet généralement d'améliorer les prévisions (sous hypothèse de pluie future connue); la correction de la pluie a des effets similaires. Néanmoins les limites de cette correction sont atteintes dans le cas où le modèle ne reproduit pas de façon satisfaisante la partie initiale de montée des eaux, ce qui pourra être amélioré par la suite. Finalement, ce travail de thèse montre que la complexité d'un bassin karstique peut être représentée efficacement à l'aide d'un nombre réduit de paramètres, pour simuler les débits, et contribue à l'amélioration des outils opérationnels pour la prévision des crues. / The sometimes devastating flash floods which affect the Mediterranean watersheds of the South of France are difficult to anticipate. Flood forecasting requires the use of rainfall-runoff models which are limited in their efficiency by uncertainty related to the spatial variability of Mediterranean rainfall and the characterization of the initial hydric state of the system. In karstic catchments, these uncertainties are added to those due to aquifer dynamics and their role in flood genesis. The first part of this work will present a distributed event-based parsimonious hourly rainfall-runoff model in order to reconstruct flash flood events at the outlet of the 114 km2 Lez Catchment (Montpellier). The model is evaluated not only for the quality of the simulations produced, but for the quality of its parameter initialization obtained using a relationship between the initial condition and various hydric state indicators of the system. Calibrated using 21 flood episodes, the model produces satisfactory simulations and its initial condition is significantly correlated with the Hu2 soil humidity index of the Météo-France model or piezometers measuring the Lez aquifer. Radar rainfall data measured in early fall are of good quality and lead to improved discharge simulations and an improved estimation of the model initial condition. However, rainfall measured by radar in late fall are of poor quality and do not improve the simulations. Confronted with the uncertainty related to model parametrization or the estimation of radar rainfall, the second part of this dissertation analyzes improvements achieved by assimilating observed discharge measurements in order to perform real-time corrections to the most sensitive model parameters and notably the initial condition and the radar rainfall input to the model. The data assimilation procedure was implemented with the help of the PALM coupling software which allows for the linking of the hydrological model with the assimilation algorithm. Correcting the initial condition allowed for, on average, the improvement of forecasting (under a known future rainfall hypothesis); correcting the rainfall had similar effects. Nevertheless, the limits of this approach are reached when the model is unable to satisfactorily reproduce the rising limb of the hydrograph, a problem which may be addressed by future research. Finally, this body of work demonstrates that the complexity of a karstic catchment can be efficiently represented with a reduced number of parameters in order to simulate discharges and contribute to the improvement of operational tools for flood forecasting.
95

Obecný bilanční srážko-odtokový model povodí / General Runoff Water Balance Model of a River Basin

Černý, Vojtěch Unknown Date (has links)
Modelling of the rainfall-runoff process is one of the basic scientific skills in hydrology. Rainfall-runoff modelling can help to improve water management, handling of the reservoir's storage volume, or also to facilitate adaptation to current climatic conditions. The aim of the diploma thesis is to create a functional rainfall-runoff model on the basis of water balance equations based on the lumped water balance principle of the hydrological model. Several modifications of the general rainfall-runoff model are approached in the diploma thesis. Four types of the daily evapotranspiration determination are used in the calculations. The rainfall-runoff model is compiled from temperature data and precipitation totals in a daily step. The practical application is carried out on a sub-basin of the river Dyje, which is located above Vranov water reservoir. The main output is a series of daily flow rates that were obtained from calibrated rainfall-runoff models. The best rainfall-runoff model takes into account the water from snow cover melting, the value of the Nash Sutcliffe calibration criterion of this model is 0.608. Finally, the hydrological simulation for the period 2021-2060 is performed in the diploma thesis.
96

Vliv půdní složky a rozdílného krajinného pokryvu na odtokový proces (experimentální výzkum v párových povodích Zbytiny) / Influence of soil matter and different land cover on the runoff process (experimental research in the paired catchments Zbytiny)

Královec, Václav January 2018 (has links)
The doctoral thesis deals with the evaluation of influences of causal factors that significantly affect runoff processes in landscape. The research is mainly focused on the examination of land and soil cover impacts and partially pays attention to the effects of surface drainage and snow cover. The main effort was to find out the extent of influences of each individual factor on runoff from a different type of landscape. In order to find the correct answer, a methodical approach was applied to small experimental paired catchments where the research has been continuously undergoing since the year of 2006 (the presented results have been collected for 11 years of observations). The small experimental paired catchments are located at the foothills of the Šumava Mountains and they represent small area neighbouring catchments of similar physical-geographic and hydrographic conditions. The catchments were selected as the comparative ones where the main differences are the landscape and soil cover. Moreover, the character of surface drainage is regarded to be an important variable. In the catchment area of the Zbytinský Brook, there predominates the grassland which is largely drained by the subsurface drainage system. In the catchment area of the Tetřívčí Brook the dominant cover is formed by the forest...
97

Einfluss von Unsicherheiten auf die Kalibrierung urban-hydrologischer Modelle

Henrichs, Malte 23 July 2015 (has links)
Der Einsatz von hydrologischen Modellen zur Unterstützung von Planung und Betrieb von Entwässerungssystemen ist als Stand der Technik anzusehen. Realitätsnahe und sichere Modellergebnisse stellen dabei die Grundlage für eine zielgerichtete Entscheidungsfindung dar. Nur durch eine Kalibrierung können Parameter von konzeptionellen Modellen zur Berechnung des Niederschlag-Abfluss-Prozesses an die Randbedingungen des zu simulierenden technischen oder natürlichen Systems angepasst werden. Auch wenn die Kalibrierung eines Modells entscheidend zur Erhöhung der Realitätsnähe beiträgt, kann diese durch unterschiedliche Faktoren beeinflusst werden. Dies ist darauf zurückzuführen, dass bei hydrologischen Modellen nicht ausschließlich deterministische Gleichungen mit physikalisch basierten Parametern eingesetzt werden. Wesentliche Einflussfaktoren auf die Kalibrierung von urbanhydrologischen Modellen sind die gewählte Modellstruktur, die Eingangsdaten, die Kalibrierdaten, die Auswahl von Kalibrierereignissen sowie die eigentliche Kalibriermethodik. Im Rahmen dieser Arbeit wurden die Einflüsse der Kalibrierdaten, der Auswahl von Ereignissen und der Kalibriermethodik auf die Ergebnisse der automatischen Kalibrierung mittels multikriterieller Optimierungsverfahren untersucht.
98

Analyse und Simulation von Unsicherheiten in der flächendifferenzierten Niederschlags-Abfluss-Modellierung

Grundmann, Jens 03 April 2009 (has links)
Die deterministische Modellierung des Niederschlags-Abfluss(N-A)-Prozesses mit flächendifferenzierten, prozessbasierten Modellen ist von zahlreichen Unsicherheiten beeinflusst. Diese Unsicherheiten resultieren hauptsächlich aus den genutzten Daten, die Messfehlern unterliegen sowie für eine flächendifferenzierte Modellierung entsprechend aufbereitet werden müssen, und der Abstraktion der natürlichen Prozesse im Modell selbst. Da N-A-Modelle in der hydrologischen Praxis vielfältig eingesetzt werden, sind Zuverlässigkeitsaussagen im Hinblick auf eine spezielle Anwendung nötig, um das Vertrauen in die Modellergebnisse zu festigen. Die neu entwickelte Strategie zur Analyse und Simulation der Unsicherheiten eines flächendifferenzierten, prozessbasierten N-A-Modells ermöglicht eine umfassende, globale und komponentenbasierte Unsicherheitsbestimmung. Am Beispiel des mesoskaligen Einzugsgebiets der Schwarzen Pockau/Pegel Zöblitz im mittleren Erzgebirge wird der Einfluss maßgebender Unsicherheiten im N-A-Prozess sowie deren Kombination zu einer Gesamt-Unsicherheit auf den Gebietsabfluss aufgezeigt. Zunächst werden die maßgebenden Unsicherheiten separat quantifiziert, wobei die folgenden Methoden eingesetzt werden: (i) Monte-Carlo Simulationen mit flächendifferenzierten stochastischen Bodenparametern zur Analyse des Einflusses unsicherer Bodeninformationen, (ii) Bayes’sche Inferenz und Markov-Ketten-Monte-Carlo Simulationen, die eine Unsicherheitsbestimmung der konzeptionellen Modellparameter der Abflussbildung und -konzentration ermöglichen und (iii) Monte-Carlo Simulationen mit stochastisch generierten Niederschlagsfeldern, die die raum-zeitliche Variabilität interpolierter Niederschlagsdaten beschreiben. Die Kombination der Unsicherheiten zu einer hydrologischen Unsicherheit und einer Gesamt-Unsicherheit erfolgt ebenfalls mit Monte-Carlo Methoden. Dieses Vorgehen ermöglicht die Korrelationen der Zufallsvariablen zu erfassen und die mehrdimensionale Abhängigkeitsstruktur innerhalb der Zufallsvariablen empirisch zu beschreiben. Die Ergebnisse zeigen für das Untersuchungsgebiet eine Dominanz der Unsicherheit aus der raum-zeitlichen Niederschlagsverteilung im Gebietsabfluss gefolgt von den Unsicherheiten aus den Bodeninformationen und den konzeptionellen Modellparametern. Diese Dominanz schlägt sich auch in der Gesamt-Unsicherheit nieder. Die aus Messdaten abgeleiteten Unsicherheiten weisen eine Heteroskedastizität auf, die durch den Prozessablauf geprägt ist. Weiterhin sind Indizien für eine Abhängigkeit der Unsicherheit von der Niederschlagsintensität sowie strukturelle Defizite des N-A-Modells sichtbar. Die neu entwickelte Strategie ist prinzipiell auf andere Gebiete und Modelle übertragbar. / Modelling rainfall-runoff (R-R) processes using deterministic, spatial distributed, process-based models is affected by numerous uncertainties. One major source of these uncertainties origins from measurement errors together with the errors occurring in the process of data processing. Inadequate representation of the governing processes in the model with respect to a given application is another source of uncertainty. Considering that R-R models are commonly used in the hydrologic practise a quantification of the uncertainties is essential for a realistic interpretation of the model results. The presented new framework allows for a comprehensive, total as well as component-based estimation of the uncertainties of model results from spatial distributed, process-based R-R modelling. The capabilities of the new framework to estimate the influence of the main sources of uncertainties as well as their combination to a total uncertainty is shown and analysed at the mesoscale catchment of the Schwarze Pockau of the Ore Mountains. The approach employs the following methods to quantify the uncertainties: (i) Monte Carlo simulations using spatial distributed stochastic soil parameters allow for the analysis of the impact of uncertain soil data (ii) Bayesian inference und Markov Chain Monte Carlo simulations, yield an estimate of the uncertainty of the conceptual model parameters governing the runoff formation and - concentration processes. (iii) Monte Carlo simulations using stochastically generated rainfall patterns describing the spatiotemporal variability of interpolated rainfall data. Monte Carlo methods are also employed to combine the single sources of uncertainties to a hydrologic uncertainty and a total uncertainty. This approach accounts for the correlations between the random variables as well as an empirical description of their multidimensional dependence structure. The example application shows a dominance of the uncertainty resulting from the spatio-temporal rainfall distribution followed by the uncertainties from the soil data and the conceptual model parameters with respect to runoff. This dominance is also reflected in the total uncertainty. The uncertainties derived from the data show a heteroscedasticity which is dominated by the process. Furthermore, the degree of uncertainty seems to depend on the rainfall intensity. The analysis of the uncertainties also indicates structural deficits of the R-R model. The developed framework can principally be transferred to other catchments as well as to other R-R models.
99

Regionalisierung von Hochwasserscheiteln auf Basis einer gekoppelten Niederschlag-Abfluss-Statistik mit besonderer Beachtung von Extremereignissen

Wagner, Michael 30 March 2012 (has links)
Die Bemessung von Bauwerken an oder in Fließgewässern erfordert die Kenntnis des statistischen Hochwasserregimes. Beispielsweise legen Hochwasserschutzkonzeptionen häufig ein Hochwasser zu Grunde, welches in einem Jahr mit der Wahrscheinlichkeit von 1/100 auftritt. Ein extremeres Hochwasser wird für den Nachweis der Standsicherheit großer Stauanlagen nach DIN 19700-12 mit einem Hochwasser der jährlichen Eintrittswahrscheinlichkeit von 1/10000 benötigt. Ein solches Hochwasser kann bereits wegen des instationären Klimas nicht allein aus Durchflussmessdaten abgeleitet, sondern lediglich idealisiert dargestellt werden. Das resultiert nicht zuletzt daraus, dass der Mensch natürlich Zeuge eines so unwahrscheinlichen Ereignisses werden kann. Jedoch kann er die Unwahrscheinlichkeit nicht nachweisen. Jedes Berechnungsschema, mit welchem ein so unwahrscheinliches Ereignis abgeschätzt werden soll, wird nur begrenzt zuverlässig sein. Das Ziel der Arbeit ist es daher, die Schätzung etwas zuverlässiger zu gestalten. Grundsätzlich gilt, dass ein Modell umso mehr bzw. sicherere Ergebnisse liefern kann, je mehr Daten in das Modell eingehen. Direkt mit dem Durchfluss gekoppelt sind Angaben zu historischen Hochwasserereignissen bzw. qualitative Einschätzungen kleinräumiger Ereignisse. Eine wichtige Datenquelle neben den Durchflussartigen ist der mit dem Durchfluss kausal verbundene Niederschlag und dessen zu vermutendes Maximum in einem Gebiet. Wird zusätzlich regional vorgegangen, können räumliche Aspekte und Strukturen in größeren Einzugsgebieten berücksichtigt werden. Diese stärken bzw. erweitern die lokalen Berechnungsgrundlagen und gewährleisten ein räumlich konsistentes Bild. Im Umkehrschluss kann das Durchflussregime regionalisiert werden, um Informationen an nicht bemessenen Orten bereitstellen zu können. Aus den genannten erweiterten Berechnungsgrundlagen lassen sich drei Anknüpfungspunkte schließen: (i) Es muss eine sehr flexible und dennoch plausible Darstellungsmöglichkeit des statistischen Niederschlagsregimes bis zum vermutlichen Maximum formuliert werden. (ii) Das entwickelte Niederschlagsregime muss mit dem Durchflussregime gekoppelt werden, um die Informationen nutzen zu können. (iii) Die anschließende Regionalisierung muss die verschachtelte baumartige Struktur hydrologischer Einzugsgebiete berücksichtigen. Punkt (i) wird durch eine zweigeteilte Verteilungsfunktion gelöst. Damit werden die ideale Darstellung des wahrscheinlicheren Bereiches und der plausible Verlauf bis zum Maximum miteinander verbunden. Bezüglich Punkt (ii) wird ein neues Kopplungsprinzip entwickelt. Dieses basiert auf der Annahme, dass ein je nach Gebiet gültiger maximaler Scheitelabflussbeiwert existiert, welcher asymptotisch erreicht wird. Im Ergebnis erhält die Durchflussverteilung mit der Abflussbeiwertapproximation einen oberen Grenzwert in Abhängigkeit von Niederschlagsmaximum und Scheitelabflussbeiwert. Entsprechend der Vorgaben in Punkt (iii) wird die Referenzpegelmethode entwickelt. Diese basiert darauf, dass ähnliche Einzugsgebiete äquivalente Hochwasserscheitel generieren. Damit können bekannte Hochwasserereignisse eines Referenzpegels auf unbeobachtete Teileinzugsgebiete übertragen werden. Bei der Wahl des Referenzpegels wird u.a. die Topologie der Einzugsgebiete berücksichtigt. Die gesamte Strategie kann auf große Untersuchungsgebiete angewandt werden. Am Beispiel sächsischer Flüsse wird die Vorgehensweise von der Datenhomogenisierung bis hin zum extremen Hochwasserdurchfluss an einem unbeobachteten Querschnitt erläutert. / The dimensioning of different constructions at and in streams respectively requires knowlegde on the flood situation at site. For instance flood protection concepts often base on a peak discharge of the annual recurrence probability of 1/100. A more severe flood of an annual recurrence probability of 1/10000 is used to confirm the stability of large dams following DIN 19700-12. Such a flood cannot be deduced from runoff data only, but rather shown in an idealised way. It results not least on the fact, that human can witness a very improbable flood event. But is it not possible to verify the improbability. Every modelling scheme that is confronted with the deduction of such an extreme flood event will be of limited reliability. The task\'s aim will therefore be to make the estimation more reliable. Generally the more data a model involves the more trustworthy the results will become. Directly coupled with runoff are historical flood data and qualitative details of small scale flood events respectively. Aside runoff information an important data source is precipitation data, which is coupled with runoff data in a causal way, and the possible maximum precipitation. If additionally whole regions are examined it is possible to consider regional facets and structures of larger catchments. These strengthen and expand local modelling basics and provide a regional consistent result. Vice versa the flood regime can be regionalised to gain information at unobserved cross sections. Out of the described expanded modelling basics follow three links: (i) It is necessary to find a flexible but still plausible formulation of the statistical precipitation regime until the probable maximum precipitation. (ii) The formulation of point i) has to be coupled with the flood regime to include these information. (iii) The adjacent regionalisation has to account for the nested and arboreal structure of hydrological catchments. Point (i) will be solved by a split distribution function. That allows the ideal display of the more probable domain as well as the characteristics until the probable maximum. Regarding point (ii) a new principle of coupling will be developed. It bases on the assumption that a regional maximum runoff coefficient exists and it will be gained asymptotically. As a result of the runoff coefficient approximation the runoff distribution function gets an upper limit depending on maximum precipitation and runoff coefficient. Respecting the guidelines in point (iii) the reference gauge method will be developed. It bases upon the fact, that likewise catchments generate equivalent peak discharges. For this reason it is possible to carry known peak discharges of a reference gauge onto unobserved subcatchments. Among other things the choice of a reference gauge accounts for the topology of the catchments. The whole strategy can be applied to large catchments what is exemplarily shown in Saxon streams. Beginning with a data homogenisation to the point of discharges of extreme low exceedance probabilities at unobserved cross sections the whole procedure is shown.
100

Dopad regionální změny klímy na hydrologický režim s ohledem na extrémní situace / Impact of the regional climate change on the hydrological regime with regard to extremes

Blahušiaková, Andrea January 2019 (has links)
Investigation of changes in the rainfall-runoff regimes of rivers and its extremes has become more important especially in the context of ongoing and future climate changes. The main aim of this study is to investigate the key factors involved in these changes and thus influence the hydrological regime. Trends and changes in climatic and hydrological variables are detected and the development of flood and drought extremes is assessed. Several methods are used to identify trends and examine their changes; the Mann-Kendall test, linear regression, simple mass curves, and comparative analysis (IHA). Flood extremity is evaluated based on flood activity levels and return period (N-year flood event), frequency and seasonality using the threshold method and culmination day. Extremity, frequency and seasonality of meteorological drought are evaluated by the threshold method, followed by de Martonne Aridity index and Relative precipitation index. Hydrological drought is evaluated based on Base flow index, Low flow index and threshold method. The main variables involved in these analyzes were annual, seasonal and monthly discharge, air temperature, precipitation and snow cover. The database of the base and other calculated variables is compiled for the period from 1931/1961 to 2010/2012. Trends and changes...

Page generated in 0.1492 seconds