• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 38
  • 18
  • 2
  • Tagged with
  • 120
  • 69
  • 54
  • 48
  • 48
  • 46
  • 33
  • 28
  • 25
  • 25
  • 25
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

3d-Übergangsmetallphthalocyanin-Moleküle auf Metalloberflächen: Der Einfluss der d-Orbitalbesetzung / 3d transition metal phthalocyanine molecules on metal surfaces - influence of the d-level-occupation

Kügel, Jens January 2015 (has links) (PDF)
Im Rahmen dieser Dissertation wird die Untersuchung von 3d-Übergangsmetallphthalocyanin- Molekülen (ÜMPc) – quadratisch-planaren organischen Molekülen, welche im Zentrum ein 3d-Übergangsmetallion besitzen – auf metallischen Oberflächen vorgestellt. Der Fokus dieser Arbeit liegt dabei auf dem Einfluss der d-Orbitalbesetzung auf die magnetischen, elektronischen und strukturellen Eigenschaften der adsorbierten Moleküle, die mit Hilfe der Rastertunnelmikroskopie und -spektroskopie charakterisiert wurden. Die gewonnen Ergebnisse werden zum Teil mit theoretischen Berechnungen analysiert und interpretiert. Die erste Hälfte der experimentellen Auswertung behandelt die Untersuchung dieser Moleküle auf Ag(001) in Hinblick auf die Existenz einer magnetischen Wechselwirkung, bei der ein unkompensiertes magnetisches Moment des Moleküls durch die Substratelektronen abgeschirmt wird. Dieser Effekt wird als Kondo-Abschirmung bezeichnet und erzeugt in der Zustandsdichte des Moleküls eine Resonanz am Fermi-Niveau. Die Messungen zeigen, dass diese Resonanz ausschließlich am Zentralion von MnPc vorgefunden wird, wohingegen sie bei allen anderen 3d-Übergangsmetallphthalocyanin-Molekülen, die eine höhere d-Orbitalbesetzung besitzen, nicht vorhanden ist. Anhand theoretischer Berechnungen kann die Ursache für dieses Verhalten darauf zurückgeführt werden, dass von allen d-Orbitalen einzig das dz2-Orbital mit dem Substrat geeignet hybridisiert, um eine Kondo-Abschirmung zu erzeugen. Da ausschließlich MnPc einen unkompensierten Spin in diesem Orbital besitzt, kann die An- bzw. Abwesenheit des Kondo-Effekts auf die unterschiedliche Besetzung des dz2-Orbitals zurückgeführt werden. Neben der eben erwähnten Kondo-Resonanz ist bei MnPc ein weiteres Merkmal am Fermi- Niveau überlagert. Durch die Analyse der räumlichen Verteilung, den Vergleich mit anderen Molekülen und der Manipulation des MnPc-Moleküls kann gezeigt werden, dass es sich bei diesem Merkmal um einen d-Orbitalzustand handelt. Die Manipulation des Moleküls durch gezieltes Entfernen von Wasserstoffatomen ermöglicht darüber hinaus die Stärke der Kondo-Abschirmung zu beeinflussen. In der zweiten Hälfte der experimentellen Auswertung werden Moleküle auf bismutinduzierten Oberflächenlegierungen der Edelmetalle Cu(111) und Ag(111) untersucht. Diese Legierungen zeichnen sich durch einen ausgeprägten Rashba-Effekt aus, der durch eine Aufspaltung der Parabeldispersion und Aufhebung der Spin-Entartung im zweidimensionalen Elektronengas der Oberflächenlegierung charakterisiert ist. Das Wachstumsverhalten von CuPc und MnPc auf diesen Oberflächen zeigt ein sehr gegensätzliches Verhalten. Während bei MnPc die Substrat-Molekül-Wechselwirkung dominant ist, wodurch diese Moleküle immer einen festen Adsorptionsplatz auf der Oberfläche besitzen, ist diese Wechselwirkung bei CuPc schwach ausgeprägt. Aus diesem Grund wandern die CuPc-Moleküle zu den Stufenkanten und bilden Cluster. Das unterschiedliche Wachstumsverhalten der Moleküle lässt sich auf die partiell-gefüllten d-Orbitale von MnPc zurückführen, die aus der Molekülebene ragen, mit dem Substrat hybridisieren und damit das Molekül an das Substrat binden. Bei CuPc hingegen sind diese d-Orbitale gefüllt und die Hybridisierung kann nicht stattfinden. Im letzten Abschnitt werden die elektronischen und magnetischen Eigenschaften von MnPc auf diesen Substraten behandelt, die einige Besonderheiten aufweisen. So bildet sich durch die Adsorption des Moleküls auf den Oberflächen eine Grenzschichtresonanz aus, die eine partielle Füllung erkennen lässt. Spektroskopiedaten, aufgenommen am Ort der Grenzschichtresonanz, weisen eine symmetrisch um das Fermi-Niveau aufgespaltene Resonanz auf. Die Intensität der unter- und oberhalb der Fermi-Energie befindlichen Resonanz zeigen dabei ein komplementäres Verhalten bzgl. der jeweiligen Lage auf der Grenzschichtresonanz: An den Orten, an denen die Resonanz unterhalb des Fermi-Niveaus ihre maximale Intensität besitzt, ist die Resonanz oberhalb des Fermi-Niveaus nicht vorhanden und umgekehrt. Diese experimentellen Beobachtungen werden mit einem Modellansatz erklärt, welcher die Wirkung eines effektiven Magnetfeldes und eine Spin-Filterung postuliert. / In the framework of this thesis, the investigation of 3d-transition metal phthalocyanine molecules (TM Pc) on metallic surfaces is presented. These molecules possess a square planar structure with a 3d transition metal ion in their center. The main focus of this work concentrates on the influence of the d-level-occupation on the magnetic, electronic and structural properties of the molecules, which are characterized by scanning tunneling microscopy and spectroscopy. The achieved results are partly analyzed and interpreted by theoretical calculations. The first half of this thesis deals with the investigation of TMPc molecules on Ag(001) and the existence of the so-called Kondo effect. This magnetic interaction, which is caused by the screening of an uncompensated magnetic moment of the molecule by the conduction electrons of the substrate, creates a resonance in the density of states close to the Fermi level. The results show, that this resonance is only present at the central metal ion of MnPc, whereas it is absent in the case of all the other 3d transition metal phthalocyanine molecules with a higher d-level occupation. Theoretical calculations indicate that the origin of this behavior can be explained by the fact that out of five d-orbitals only the dz2-orbital can sufficiently hybridize with the substrate to form a Kondo screening channel. As MnPc is the only molecule with an uncompensated spin in this orbital, the presence and absence of a Kondo resonance can be explained by the different occupation of the dz2-orbital. Besides the aforementioned Kondo resonance, another superimposed feature close to the Fermi energy was observed for MnPc. By analyzing the spatial distribution of the features, by comparing the spectroscopy curves of different molecules and by manipulating the MnPc molecule, this feature can be assigned to a d-orbital state. With the manipulation of the MnPc, which was achieved by removing hydrogen atoms of the molecule, the strength of the Kondo screening can be tuned. The second half of the experimental analysis deals with the molecular investigation on bismuth–induced surface alloys of the noble metal crystals Cu(111) and Ag(111). These surface alloys exhibit a pronounced Rashba effect, which splits the parabolic dispersion and lifts the spin degeneracy of the two-dimensional electron gas. On these surfaces, the growth behavior of CuPc and MnPc is very different. While the substrate-molecule–interaction dominates in the case of MnPc, leading to a specific and robust adsorption site of the molecule, this interaction is only weakly present in the case of CuPc. As a result, the CuPc molecules are able to move to the step edges and form clusters. This difference can be attributed to the partial filling of the d-orbitals in the case of MnPc, which protrude out of the molecular plane, hybridize with the substrate and bind the molecule to the substrate. Contrary, in the case of CuPc these orbitals are completely filled, which prevents the hybridization between the d-orbital and the substrate. In the last section, the electronic and magnetic properties of MnPc will be presented, which show some peculiar features. Due to adsorption of the molecule to the surface, an interface resonance with a partial occupancy is created. The spectroscopic data taken at the interface resonance indicate the existence of a split resonance arranged symmetrically with respect to the Fermi energy. The intensity of the occupied and unoccupied resonance show a complementary behavior regarding different positions of the interface resonance. At the positions, where the resonance in the occupied energy regime shows a maximum in intensity, the resonance in the unoccupied states is absent and vice versa. These experimental findings will be explained by a model approach, which postulates the influence of an effective magnetic field and a spin-filtering component.
42

Strukturelle und elektronische Eigenschaften metallischer Oberflächen unter dem Einfluss von Korrelationseffekten / Structural and electronic properties of metallic surfaces under the influence of correlation effects

Kemmer, Jeannette January 2016 (has links) (PDF)
Die vorliegende Arbeit untersucht mit Rastertunnelmikroskopie (RTM) und -spektroskopie (RTS) die Korrelation von strukturellen, elektronischen und magnetischen Eigenschaften auf metallischen Oberflächen. Zuerst wird der spin-aufgespaltene Oberflächenzustand des Ni(111) analysiert. Anschließend geht der Fokus über auf dünne Eisenfilme, die auf Rh(001) gewachsen wurden. Zuletzt wird die CePt$_5$/Pt(111)-Oberflächenlegierung untersucht. Nickel ist ein bekannter Ferromagnet und die (111)-Oberfläche war in der Vergangenheit schon mehrfach das Objekt theoretischer und experimenteller Studien. Trotz intensiver Bemühungen wurden inkonsistente Ergebnisse veröffentlicht und ein klares, konsistentes Bild ist noch nicht vorhanden. Aus diesem Grund wird die Ni(111)-Oberfläche mittels RTM und RTS erforscht, die den Zugang sowohl zu besetzten als auch unbesetzten Zuständen ermöglicht. Mit der Methode der Quasiteilcheninterferenz wird eine detailierte Beschreibung der Banddispersion erhalten. Die Austauschaufspaltung zwischen Minoritäts- und Majoritätsoberflächenzustands wird zu ∆E$_{ex}$ = (100 ± 8) meV ermittelt. Der Ansatzpunkt des Majoritätsbandes liegt bei E − E$_F$ = −(160 ± 8)meV und die effektive Masse beträgt m^* = +(0,14 ± 0,04)me. Des Weiteren liegt der Ansatzpunkt der Oberflächenresonanz der Majoritätladungsträger energetisch bei E−E$_F$ = −(235±5)meV mit einer effektiven Masse von m^* = +(0,36±0,05)m$_e$. Um unmissverständlich den dominierenden Spin-Kanal in der RTS zu identifizieren, wurden hexagonale Quantentröge durch reaktives Ionenätzen hergestellt und mit der Hilfe eines eindimensionalen Quantentrogmodells interpretiert. Die sechs Kanten eines Hexagons erscheinen unterschiedlich. Atomar aufgelöste Messungen zeigen, dass gegenüberliegende Kanten nicht nur eine unterschiedliche Struktur haben sondern auch unterschiedliche spektroskopische Eigenschaften, die durch einen alternierend auftauchenden oder abwesenden spektroskopischen Peak charakterisiert sind. Magnetische Messungen ergeben allerdings keine endgültigen Ergebnisse bezüglich des Ursprungs des Beobachtungen. Das zweite experimentelle Kapitel dreht sich um dünne Eisenfilme, die auf eine saubere Rh(001)-Oberfläche aufgebracht und diese dann mit RTM, RTS und spin-polarisierter (SP- )RTM untersucht werden. Eine nahezu defektfreie Rh(001)-Oberfläche ist notwendig, um ein Wachstum der Eisenfilme mit wenigen Defekten zu erhalten. Dies ist relevant, um das magnetische Signal korrekt interpretieren zu können und den möglichen Einfluss von Adsorbaten auszuschließen. Die erste atomare Lage Fe ordnet sich antiferromagnetisch in einer c(2 × 2)-Struktur an mit der leichten Magnetisierungsachse senkrecht zur Probenoberfläche. Die zweite und dritte Lage verhält sich ferromagnetisch mit immer kleiner werdenden Domänen für steigende Bedeckung. Ab 3,5 atomaren Lagen kommt es vermutlich zu einer Änderung der leichten Magnetisierungsrichtung von vertikal zu horizontal zur Probenebene. Dies wird durch kleiner werdende Domänengrößen und den gleichzeitig breiter werdenden Domänenwänden signalisiert. Temperaturabhängige spin-polarisierter RTM erlaubt es die Curietemperatur der zweiten Lage auf 80 K zu schätzen. Zusätzlich wurde bei dieser Bedeckung eine periodische Modulation der lokalen Zustandsdichte gemessen, die mit steigender Periodizität auch auf der dritten und vierten Lage erscheint. Temperatur- und spannungsabhängige Messungen unterstützen eine Interpretation der Daten auf der Grundlage einer Ladungsdichtewelle. Ich zeige, dass die beiden für gewöhnlich konkurrierende Ordnungen (Ladungs- und magnetische Ordnung) koexistieren und sich gegenseitig beeinflussen, was theoretische Rechnungen, die in Zusammenarbeit mit F. P. Toldin und F. Assaad durchgeführt wurden, bestätigen können. Im letzten Kapitel wurde die Oberflächenlegierung CePt$_5$/Pt(111) analysiert. Diese System bildet laut einer kürzlich erschienenen Veröffentlichung ein schweres Fermionengitter. Von der sauberen Pt(111)-Oberfläche ausgehend wurde die Oberflächenlegierung CePt$_5$/Pt(111) hergestellt. Die Dicke der Legierung (t in u.c.) lässt sich durch die aufgedampfte Menge an Cer variieren und die erzeugte Oberfläche wurde mit RTM und RTS für verschiedene Dicken unter- sucht. RTM-Bilder und LEED (engl.: low energy electron diffraction)-Daten zeigen konsistente Ergebnisse, die in Zusammenarbeit mit C. Praetorius analysiert wurden. Für Bedeckungen unter einer atomaren Lage Cer konnte keine geordnete Struktur mit dem RTM beobachtet werden. Für 2 u.c. wurde eine (2 × 2)-Rekonstruktion an der Oberfläche gemessen und für 3 u.c. CePt$_5$ wurde eine (3√3×3√3)R30◦-Rekonstruktion beobachtet. Der Übergang von 3 u.c. CePt5 zu 5 u.c. CePt$_5$ wurde untersucht. Mit Hilfe eines Strukturmodells schließe ich, dass es weder zu einer Rotation des atomaren Gitters noch zu einer Rotation des Übergitters kommt. Ab einer Bedeckung von 6 u.c. CePt5 erscheint eine weitere Komponente der CePt$_5$-Oberflächenlegierung, die keine Rekonstruktion mehr besitzt. Das atomare Gitter verläuft wieder entlang der kris- tallographischen Richtungen des Pt(111)-Kristalls und ist somit nicht mehr um 30^° gedreht. Für alle Bedeckungen wurden Spektroskopiekurven aufgenommen, die keinen Hinweis auf ein kohärentes schweres Fermionensystem geben. Eine Erklärung hierfür kommt aus einer LEED-IV Studie, die besagt, dass jede gemessene Oberfläche mit einer Pt(111)-Schicht terminiert ist. Das RTM ist sensitiv für die oberste Schicht und somit wäre der Effekt eines kohärenten schweren Fermionensystems nicht unbedingt messbar. / The present work investigates the correlation of structural, electronic, and magnetic properties at metal surfaces by scanning tunneling microscopy (STM) and spectroscopy (STS). First I analyze the spin-split surface state of Ni(111). Subsequently the focus goes on iron thin films grown on Rh(001). Finally the heavy-fermion candidate CePt5/Pt(111) is investigated. Nickel is a well-known ferromagnet and its (111) surface has been the subject of several theoretical and experimental studies in the past. Despite intensive efforts, inconsistent results have been reported and a clear consistent picture is still missing. For this reason, the Ni(111) surface has been probed by STM and STS, which give access to both occupied and unoccupied states. By quasi-particle interference mapping a detailed description of the band dispersion is obtained. The exchange splitting between minority and majority spin states amounts to ∆E$_{ex}$ = (100 ± 8) meV. The onset of the majority band is located at E − E$_F$ = −(160 ± 8)meV and its effective mass is m^* = +(0,14 ± 0,04)me. Furthermore, the onset of the majority spin surface resonance is energetically located at E−E$_F$ = −(235±5)meV and with an effective mass equal to m^* = +(0,36±0,05)m$_e$. To unequivocally identify which spin channels dominate the STS signal, hexagonal quantum wells have been created by sputtering, and interpreted using a one-dimensional quantum well model. The six edges of the hexagon result to be unequal. Atomically resolved measurements show that adjacent edges have not only a different structure, but also different spectroscopic signatures characterized by an alternating sequence of presence and absence of an additional spectroscopic peak. Spin-dependent (SP-STM) measurements did not give any definite conclusion on the origin of this observation. The second experimental section deals with thin iron films deposited on a clean Rh(001) surface and examined by STM, STS and SP-STM. A nearly defect-free Rh(001) is necessary to obtain a growth of iron films with few defects. This is required to correctly interpret the magnetic signal excluding the possible influence of contaminants. The first atomic layer of Fe orders antiferromagnetically in a c(2 × 2)-structure with the easy magnetization axis perpendicular to the surface plane. The second and third layer behaves ferromagnetically with domains sizes which get progressively smaller by increasing the coverage. Above 3.5 atomic layers, a reorientation of the easy magnetization direction from out-of-plane to in-plane takes place. This is signaled by the size of magnetic domains which become smaller while at the same time domain walls become larger. Temperature-dependent SP-STM measurements allow to estimate a Curie temperature of approximatelly 80K for the second layer. At this coverage an additional periodic modulation of the local density of states is detected and persists, although with a shorter wavelength, in the third and fourth layer. Temperature and voltage-dependent measurements support an interpretation of these data based on the existence of a charge density wave. I show that these two usually competing orders (charge and magnetic order) coexist and influence each other, as also confirmed by theoretical calculations performed in collaboration with F. P. Toldin and F. Assaad. In the final chapter the CePt5/Pt(111) intermetallic surface compound has been analyzed. This system has been recently reported to give rise to a heavy Fermion lattice. Starting from the clean Pt(111) surface, the intermetallic surface compound CePt5/Pt(111) is prepared. The thickness of the alloy (t in u.c.) can be varied by the evaporated amount of cerium and the surface produced is examined with STM and STS for various thicknesses. STM images and LEED patterns analyzed in collaboration with C. Praetorius provide consistent results. For coverages below one atomic layer cerium no ordered structure with the STM was observed. For 2 u.c. a (2 × 2) surface structure and for 3 u.c. CePt5 a (3√3×3√3)R30◦-structure was observed. The transition from 3 u.c. CePt5 to 5 u.c. CePt5 was investigated. Supported by structural modelling I conclude that neither a rotation of the atomic lattice nor a rotation of the superstructure was observed. Starting at a coverage of 6 u.c. CePt5 the CePt5 intermetallic surface compound evolves into a different structure. The high symmetry direction is aligned with the underlying Pt(111) crystal and no longer rotated by 30. For all coverages spectroscopic data are acquired, which give no indication of a coherent heavy Fermion system. One explanation is based on a LEED-IV study, which says that any measured surface is terminated with a Pt(111)-layer. The STM is sensitive to the uppermost layer, and thus the effect of a coherent heavy Fermion system would not necessarily measurable.
43

Selbstorganisation von semisynthetischen Zinkchlorinen zu biomimetischen Lichtsammelsystemen und definierten Nanostrukturen

Huber, Valerie. Unknown Date (has links) (PDF)
Würzburg, Universiẗat, Diss., 2007.
44

In-situ-Untersuchungen zur molekularen Struktur von Festkörper, Elektrolyt-Grenzflächen Platin und {[alpha]-Al2O3 (001) [Alpha-Al2O3 (001)]

Braunschweig, Björn January 2009 (has links)
Zugl.: Clausthal, Techn. Univ., Diss., 2009
45

Dynamics and manipulation of surface states

Kliewer, Jörg Uwe. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.
46

Tunnelspektroskopie und Photoemission bei tiefen Temperaturen an Edelgas-Modellsystemen und Nanostrukturen

Grimm, Burkhard. Unknown Date (has links)
Universiẗat, Diss., 2000--Dortmund. / Dateiformat: PDF.
47

Tunneling spectroscopy of highly ordered organic thin films

Törker, Michael. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Dresden.
48

Untersuchung organischer Adsorbate auf kristallinen Substraten mit dem Raster-Tunnel-Mikroskop

Lackinger, Markus. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Chemnitz.
49

Selbstorganisation von semisynthetischen Zinkchlorinen zu biomimetischen Lichtsammelsystemen und definierten Nanostrukturen / Self-Assembly of Semi-Synthetic Zinc Chlorins into Biomimetic Light-Harvesting Systems and Defined Nanostructures

Huber, Valerie January 2007 (has links) (PDF)
Diese Arbeit beschäftigt sich mit der Selbstorganisation von Zinkchlorin-Farbstoffen, welche sich strukturell von Chlorophyllen ableiten. Im Gegensatz zu allen anderen bakteriellen und pflanzlichen Lichtsammelpigmenten ist es den Bakteriochlorophyllen c, d und e der Lichtsammelsysteme grüner phototropher Bakterien möglich, allein durch nichtkovalente Wechselwirkungen zwischen den Farbstoff-Molekülen, ohne die Beteiligung von Proteinen, röhrenförmige Antennensysteme auszubilden, welche die am dichtest gepackten und effizientesten Lichtsammelsysteme in der Natur darstellen. Um einen Betrag zur Aufklärung dieser biologisch wichtigen Aggregate zu leisten, wurden im ersten Teil dieser Arbeit Zinkchlorine als Modellverbindungen für BChl c hergestellt. Mit den neu synthetisierten Zinkchlorinen ist es gelungen, Modellsysteme der natürlichen BChl-Selbstorganisate herzustellen, welche sich im Gegensatz zu den bisher in der Literatur beschriebenen Zinkchlorin-Aggregaten durch eine gute und dauerhafte Löslichkeit auszeichnen. Diese Eigenschaft erlaubte es sowohl spektroskopische als auch mikroskopische Untersuchungen zur Aufklärung der Aggregatstruktur durchzuführen. Durch Rasterkraftmikroskopie an den Zinkchlorin Aggregaten konnte erstmals ein mikroskopischer Beweis der stabförmigen Struktur von Aggregaten dieser Substanzklasse erhalten werden. Der zweite Teil dieser Arbeit beschäftigt sich mit Zinkchlorinen, denen aufgrund einer methylierten 31-Hydroxy-Gruppe die Fähigkeit zur Röhrenbildung fehlt, die aber durch Koordinationsbindungen und p-p-Wechselwirkungen weiterhin Stapel bilden können. Temperaturabhängige UV/Vis- und CD-spektroskopische Studien offenbarten die reversible Bildung von löslichen, chiralen Zinkchlorin-Stapelaggregaten. Rasterkraft- und rastertunnelmikroskopische Untersuchungen zeigen die Bildung von zwei Typen p-gestapelter Aggregate auf hoch geordnetem Graphit. / This work deals with the self-assembly of zinc chlorin dyes, which are structurally derived from chlorophylls. In contrast to all other bacterial and herbal light-harvesting pigments, the bacteriochlorophylls c, d and e of green phototropic bacteria are able to build tubular antennae solely by noncovalent interactions between the dye molecules, without any involvement of proteins, which represent the most densely packed and efficient light-harvesting systems in nature. To contribute to the structural elucidation of this biologically important aggregates, in the first part of this work zinc chlorins were synthesized as model compounds for BChl c. With the newly synthesized zinc chlorins it was possible to build model systems of the natural BChl self-assemblies that are, in contrast to literature known zinc chlorin aggregates, characterized by a proficient and durable solubility. This favourable property allows spectroscopic as well as microscopic investigations for the elucidation of the aggregate structure. Atomic force microscopy of the aggregates provided by the first time also a microscopic evidence for the rod-shaped structure of the aggregates of this class of substances. The second part of this work deals with the zinc chlorins, which lack the possibility of forming tubular aggregates because of a methylated 31-hydroxy group, but they may still form stacks by coordinative bonds and p-p interactions. Temperature-dependent UV/Vis and CD spectroscopic studies bare the reversible formation of soluble and chiral stacked aggregates of zinc chlorins. Atomic force and scanning tunnelling microscopic studies show the formation of two different types of p-stacked aggregates on highly ordered graphite surface.
50

Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide / Realisierung und Spektroskopie des Quanten-Spin-Hall-Isolators Bismuten auf Siliziumkarbid

Reis, Felix January 2022 (has links) (PDF)
Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel. / Topologische Materie ist seit der Vorhersage des Quanten-Spin-Hall-Effekts in Graphen im Jahr 2005 eines der spannendsten Forschungsgebiete der gegenwärtigen Festkörperphysik. Quanten-Spin-Hall-Isolatoren besitzen zwar eine verschwindende Volumen-Leitfähigkeit, aber symmetriegeschützte, helikale Randzustände, welche verlustfreien Ladungstransport erlauben. Der 2007 erfolgte experimentelle Nachweis dieses außergewöhnlichen Materiezustands führte, inspiriert von möglicherweise bahnbrechenden zukünftigen Anwendungen, zu einem sprunghaften Anstieg der Forschungsaktivitäten auf diesem Gebiet. Jedoch ist der Nutzen der derzeit verfügbaren Quanten-Spin-Hall-Materialien aufgrund ihrer vergleichsweise kleinen Volumen-Bandlücken auf kryogene Temperaturen beschränkt. In dieser Arbeit verfolgen wir einen neuen Weg, ein Quanten-Spin-Hall-Material mit einer großen Energielücke zu realisieren und wachsen Bismuten, ein Honigwabengitter aus Bi-Atomen, epitaktisch in einer \((\sqrt{3}\times\sqrt{3})\)-Rekonstruktion auf den Halbleiter SiC(0001). Dadurch nutzen wir sowohl die Honigwaben-Symmetrie, als auch die große Spin-Bahn-Wechselwirkung von Bi aus, welche in Kombination zu einer topologisch nicht-trivialen Bandlücke in der Größenordnung eines Elektronenvolts führen. Eine eingehende theoretische Analyse zeigt, dass die kovalente Bindung zwischen den Si- und Bi-Atomen nicht nur den Bi-Film stabilisiert, sondern entscheidend zur Ausprägung der Quanten-Spin-Hall-Phase beiträgt. Die Präparation unrekonstruierter SiC(0001)-Substrate hoher Güte ist der Grundstein für das Bismutenwachstum und erfordert die Anwendung einer aufwändigen Prozedur in hochreinem, trockenem H\(_2\)-Gas. Messungen mit Rastertunnelmikroskopie enthüllen die (\(1\times1\))-Periodizität der Oberfläche und glatte Terrassenebenen, welche für das Aufwachsen einzelner Bi-Lagen mittels eines dedizierten Molekularstrahlepitaxieprozesses geeignet sind. Die chemische Konfiguration der Filme und ihre Oxidation nach Kontakt mit Umgebungsluft wird mit Röntgenphotoelektronenspektroskopie untersucht. Winkelaufgelöste Photoelektronenspektroskopie legt die exzellente Übereinstimmung zwischen gemessener und berechneter Bandstruktur offen. Insbesondere zeigt sie die charakteristische Rashba-Spinaufspaltung der Valenzbänder am K-Punkt. Messungen mit Rastertunnelspektroskopie beinhalten ebenso Hinweise dieser Aufspaltung, und ermöglichen die Bestimmung der vollständigen Größe der Bandlücke von \(E_\text{gap}\approx0.8\,\text{eV}\). Konstantstrom-Aufnahmen und Karten der lokalen Zustandsdichte bestätigen die Ausbildung eines planaren Honigwabengitters, welches aufgrund unterschiedlicher, jedoch äquivalenter Nukleationszentren der (\(\sqrt{3}\times\sqrt{3}\))-Bi-Rekonstruktion in mehreren Domänen auftritt. Messungen der differenziellen Leitfähigkeit offenbaren, dass sich Bismuten-Randzustände an atomaren Stufen des SiC-Substrats ausbilden. Die gemessene, lokale Zustandsdichte und die gemäß der Energiedispersion des Randzustands in Dichtefunktionaltheorierechnungen erwartete Zustandsdichte stimmen - abgesehen von einem starken Abfall am Fermi-Niveau - überein. Mit temperatur- und energieabhängiger Tunnelspektroskopie wird gezeigt, dass die spektralen Eigenschaften dieser unterdrückten Leitfähigkeit erfolgreich im Rahmen der Tomonaga-Luttinger-Flüssigkeitstheorie beschrieben und wahrscheinlich durch verstärkte elektronische Korrelationen im Randkanal ausgelöst werden.

Page generated in 0.0958 seconds