• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Methods to Enhance 3G/ Beyond 3G/ Wireless LAN Transmission Rate and Efficiency

Liu, Wen-Chung 08 July 2002 (has links)
To achieve two main objectives, viz., to increase the system capacity and having higher data rates, of 3G system for individual users, it comes up to be the unprecedented demand on both communication bandwidth and powerful DSP processing techniques. In this thesis, a new space-time encoding scheme, referred to as the Virtual Constellation Mapping (VCM) scheme associated with the turbo encoder, is devised to enhance transmission data rate and spectral efficiency. It also alleviates the requirement of powerful signal processing technique. In fact, the proposed scheme is very simple and could be used to achieve full utilizing encoding efficiency. It means that the new scheme is easy in practical implementation. To verify the advantages of this new scheme, we apply it to both the 3GPP FDD of WCDMA system and OFDM based Wireless LAN system. First, by comparing the proposed scheme with the conventional standards 3GPP scheme, the information data rate is increased from 384 kbps information data rate to 450.4 kbps, that is 17 % improvement. It should be noted by using the new approach, other system components of 3GPP, e.g., modulation scheme, control bits and the data rate of the QPSK modulators outputs, are all the same. Moreover, this VCM scheme can be applied to the multicarrier modulation or the Wireless LAN with the OFDM modulation. Computer simulation results showed that with the same transmission data rate, our scheme is more robustness compare with the conventional space-time trellis coded OFDM scheme, in high Doppler fading channel. In addition, the proposed scheme required less decoding complexity as the standards, when it is implemented in the 3GPP system and the OFDM system with space-time trellis coding scheme.
2

Synthesis of Polyaromatic Hydrocarbons via Mechanochemistry

Wang, Cong 18 October 2019 (has links)
No description available.
3

Optimization of Wire Diameter for Maximizing Removal Rate in Wire Electrical Discharge Machining

Biman-Telang, Akshyn January 2023 (has links)
Wire electrical discharge machining (WEDM) is a precision machining process that uses electrical discharges struck between an axially moving wire electrode and the workpiece to remove material through melting and vaporization. WEDM is replacing traditional processes like broaching for machining safety-critical components such as the turbine disk in the manufacture of fuel-efficient jet engines. The main issue preventing the more widespread use of WEDM is that due to WEDM being less productive than broaching, it currently requires 6 WEDM machine tools to replace a single broaching machine to maintain the same throughput. The main factor limiting WEDM productivity is wire breakage. To increase the Cutting Rate (CR) more power is required, and increasing power also increases the likelihood of breakage. The goal of this research is to determine whether wires thicker than the conventional 0.25 mm diameter will both optimize the cutting rate and minimize breakage. Thicker wires will allow for an increase in the duty factor, with a significantly decreased incidence of wire breakage. Given that an increased wire diameter also increases the kerf width, this research seeks to identify the optimal wire diameter that maximizes the linear cutting rate. This research concluded that using wire of optimal diameter in WEDM increases the CR by as much as 400%. / Thesis / Master of Science in Mechanical Engineering (MSME) / In order to secure jet engine blades onto the engine, complex features called Firtree Root Forms (FTRF) are used. These features need to be very precisely cut in order for the engine to work at peak efficiency. Currently, industry is using a manufacturing process called broaching to machine these FTRFs, however broaches wear out over time, which causes imprecise cuts. The solution to this is to use Wire Electrical Discharge Machining (WEDM). The problem with WEDM is that it takes on average 6 machines to replace a single broaching machine in terms of productivity. The objective of this project is to increase the cutting speed (and thus productivity) of WEDM, and one of the ways to do that is to increase the electrode wire diameter. This allows for more power to be used in the machining process without the risk of wire breakage, which is a major problem when cutting with WEDM. The research presented in this thesis successfully demonstrates that using thicker wires in WEDM can cut as much as 400% faster than the wires currently in common use in industry.
4

Hybrid Envelope Tracking Supply Modulator Analysis and Design for Wideband Applications

January 2019 (has links)
abstract: A wideband hybrid envelope tracking modulator utilizing a hysteretic-controlled three-level switching converter and a slew-rate enhanced linear amplifierer is presented. In addition to smaller ripple and lower losses of three-level switching converters, employing the proposed hysteresis control loop results in a higher speed loop and wider bandwidth converter, enabling over 80MHz of switching frequency. A concurrent sensor circuit monitors and regulates the flying capacitor voltage VCF and eliminates conventional required calibration loop to control it. The hysteretic-controlled three-level switching converter provides a high percentage of power amplifier supply load current with lower ripple, reducing the linear amplifier high-frequency current and ripple cancellation current, improving the overall system efficiency. A slew-rate enhancement (SRE) circuit is employed in the linear amplifier resulting in slew-rate of over 307V/us and bandwidth of over 275MHz for the linear amplifier. The slew-rate enhancement circuit provides a parallel auxiliary current path directly to the gate of the class-AB output stage transistors, speeding-up the charging or discharging of out- put without modifying the operating point of the remaining linear amplifier, while maintaining the quiescent current of the class-AB stage. The supply modulator is fabricated in 65nm CMOS process. The measurement results show the tracking of LTE-40MHz envelope with 93% peak efficiency at 1W output power, while the SRE is disabled. Enabling the SRE it can track LTE-80MHz envelope with peak efficiency of 91%. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
5

Burning Behaviors of Solid Propellants using Graphene-based Micro-structures: Experiments and Simulations

Shourya Jain (5929820) 21 December 2018 (has links)
<div>Enhancing the burn rates of solid propellants and energetics is a crucial step towards improving the performance of several solid propellant based micro-propulsion systems. In addition to increasing thrust, high burn rates also help simplify the propellant grain geometry and increase the volumetric loading of the rocket motor, which in turn reduces the overall size and weight. <b><i>Thus, in this work, burn rate enhancement of solid propellants when coupled to highly conductive graphene-based micro-structures was studied using both experiments and molecular dynamic (MD) simulations.</i></b></div><div><b><i><br></i></b></div><div><div>The experiments were performed using three different types of graphene-structures i.e. graphite sheet (GS), graphene nano-pellets (GNPs) and graphene foam (GF), with nitrocellulose (NC) as the solid propellant.</div></div><div><br></div><div><div>For the NC-GS samples, propellant layers ranging from 25 µm to 170 µm were deposited on the top of a 20 µm thick graphite sheet. Self-propagating combustion waves were observed, with burn rate enhancements up to 3.3 times the bulk NC burn rate (0.7 cm/s). The burn rates were measured as a function of the ratio of fuel to graphite layer thickness and an optimum thickness ratio was found corresponding to the maximum enhancement. Moreover, the ratio of fuel to graphite layer thickness was also found to affect the period and amplitude of the combustion wave oscillations. Thus, to identify the important non-dimensional parameters that govern the burn rate enhancement and the oscillatory nature of the combustion waves, a numerical model using 1-D energy conservation equations along with simple first-order Arrhenius kinetics was also developed.</div><div><br></div><div><div>For the GNP-doped NC lms, propellant layers, 500 30 µm thick, were deposited on the top of a thermally insulating glass slide with the doping concentrations of GNPs being varied from 1-5% by mass. An optimum doping concentration of 3% was obtained for which the burn rate enhancement was 2.7 times. In addition, the effective thermal conductivities of GNP-doped NC lms were also measured experimentally using a steady state, controlled, heat flux method and a linear increase in the thermal conductivity value as a function of the doping concentration was obtained.</div></div><div><br></div><div><div>The third type of graphene structure used was the GF - synthesized using a chemical vapor deposition (CVD) technique. The effects of both the fuel loading ratio and GF density were studied. Similar to the GNPs, there existed an optimum fuel loading ratio that maximized the burn rates. However, as a function of the GF density, a monotonic decreasing trend in the burn rate was obtained. Overall, burn rate enhancement up to 7.6 times was observed, which was attributed to the GF's unique thermal properties resulting from its 3D interconnected network, high thermal conductivity, low thermal boundary resistance and low thermal mass. Moreover, the thermal conductivity of GF strut walls as a function of the GF density was also measured experimentally.</div></div><div><br></div><div><div>Then as a next step, the GF structures were functionalized with a transition metal oxide (MnO<sub>2</sub>). The use of GF-supported catalyst combined the physical eect of enhanced thermal transport due to the GF structure with the chemical effect of increased chemical reactivity (decomposition) due to the MnO<sub>2</sub> catalyst, and thus, resulted in even further burn rate enhancements (up to 9 times). The burn rates as a function of both the NC-GF and MnO<sub>2</sub>-NC loadings were studied. An optimum MnO<sub>2</sub>-NC loading corresponding to the maximum burn rate was obtained for each NC-GF loading. In addition, thermogravimetric (TG) and differential scanning</div><div>calorimetry (DSC) analysis were also conducted to determine the effect of NC-GF and MnO<sub>2</sub>-NC loadings on the activation energy (E) and peak thermal decomposition (PTD) temperatures of the propellant NC.</div></div><div><br></div><div><div>In addition to the experimental work, molecular dynamics simulations were also conducted to investigate the thermal transport and the reactivity of these coupled solidpropellant/graphene-structures. A solid monopropellant, Pentaerythritol Tetranitrate (PETN), when coupled to highly conductive multi-walled carbon nanotubes (MWCNTs) was considered. The thickness of the PETN layer and the diameter of the MWCNTs were varied to determine the effect of PETN-MWCNT loading on the burn rates obtained. Burn rate enhancement up to 3 times was observed and an optimal PETN-MWCNT loading of 45% was obtained. The enhancement was attributed to the faster heat conduction in CNTs and to the layering of PETN molecules around the MWCNTs surface. Moreover, the CNTs remained unburned after the combustion process, conrming that these graphene-structures do not take part in the chemical reactions but act only as thermal conduits, transferring heat from the burned to the unburned portions of the fuel.</div></div><div><br></div><div><div>A long-pursued goal, which is also a grand challenge, in nanoscience and nanotechnology is to create nanoscale devices, machines and motors that can do useful work. However, loyal to the scaling law, combustion would be impossible at nanoscale because the heat loss would profoundly dominate the chemical reactions. <b><i>Thus, in addition to the solid propellant work, a preliminary study was also conducted to understand as how does the heat transfer and combustion couple together at nano-scales.</i></b></div></div><div><b><i><br></i></b></div><div><div>First, an experimental study was performed to understand the feasibility of combustion at nano-scales for which a nano-scale combustion device called "nanobubbles" was designed. These nanobubbles were produced from short-time (< 2000 µs) water electrolysis by applying high-frequency alternating sign square voltage pulses (1-500 kHz), which resulted in H<sub>2</sub> and O<sub>2</sub> gas production above the same electrode. Moreover, a 10 nm thick Pt thermal sensor (based on resistance thermometry) was also fabricated underneath the combustion electrodes to measure the temperature changes obtained. A signicant amount of bubble production was seen up to 30 kHz but after that the bubble production decreased drastically, although the amount of faradaic current measured remained unchanged, signifying combustion. The temperature changes measured were also found to increase above this threshold frequency of 30 kHz.</div></div><div><br></div><div><div>Next, non-reactive molecular dynamic simulations were performed to determine as how does the surface tension of water surrounding the electrodes is affected by the presence of dissolved external gases, which would in turn help to predict the pressures inside nanobubbles. Knowing the bubble pressure is a perquisite towards understanding the combustion process. The surface tension of water was found to decrease with an increase in the supersaturation ratio (or an increase in the external gas concentration), thus, the internal pressure inside a nanobubble is much smaller than what would have been predicted using the planar-interface surface tension value of water. Once the pressure behavior as a function of external gas supersaturation was understood, then as a next step, reactive molecular dynamic simulations were performed to study the effects of surface-assisted dissociation of H<sub>2</sub> and O<sub>2</sub> gases and initial system pressure on the ignition and reaction kinetics of the H<sub>2</sub>/O<sub>2</sub> system at nano-scales. A signicant amount of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), 6-140 times water (H<sub>2</sub>O), was observed in the combustion products. This was attributed to the low temperature(~300 K) and high pressure (2-80 atm) conditions at which the chemical reactions were taking place. Moreover, the rate at which heat was being lost from the combustion chamber (nanobubble) was also compared to the rate at which heat was being released from the chemical reactions and only a slight rise in the reaction temperature was observed (~68 K), signifying that, at such small-scales, heat losses dominate.</div></div><div><br></div></div>
6

Power-Efficient Settling Time Reduction Techniques for a Folded-Cascode Amplifier in 1.8 V, 0.18 um CMOS / Energi-effektiva metoder för att minska insvängningstiden för en folded-cascodeförstärkare i 1.8V, 0.18um CMOS

Johansson, Jimmy January 2017 (has links)
Testability is crucial in today’s complex industrial system on chips (SoCs), where sensitive on-chip analog voltages need to be measured. In such cases, an operational amplifier (opamp) is required to sufficiently buffer the signals before they can drive the chip pad and probe parasitics. A single-stage opamp offers an attractive choice since it is power efficient and eliminates the need for frequency compensation. However, it has to satisfy demanding specifications on its stability, input common mode range, output swing, settling time, closed-loop gain and offset voltage. In this work, the settling time performance of a conventional folded-cascode (FC) opamp is substantially improved. Settling time of an opamp consists of two major components, namely the slewing period and the linear settling period. In order to reduce the settling time significantly without incurring excessive area and power penalty, a prudent circuit implementation that minimizes both these constituents is essential. In this work, three different slew rate enhancement (SRE) circuits have been evaluated through extensive simulations. The SRE candidate providing robust slew rate improvement was combined with a current recycling folded cascode structure, resulting in lower slewing and linear settling time periods. Exhaustive simulations on a FC cascode amplifier with complementary inputs illustrate the effectiveness of these techniques in settling time reduction over all envisaged operating conditions.

Page generated in 0.4381 seconds