11 |
Experimental Study of a Direct Internal Reforming Solid Oxide Fuel Cell:Thermal Effects of Steam-Methane Reforming Reactions / 直接内部改質式固体酸化物形燃料電池の実験的研究:メタン水蒸気改質反応の熱的影響Sugihara, Shinichi 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22773号 / 工博第4772号 / 新制||工||1746(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 岩井 裕, 教授 吉田 英生, 教授 江口 浩一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
12 |
Characterization of a Red Multimode Vertical-Cavity Surface-Emitting Laser for Intrinsic ParametersWagstaff, Jonathan 07 1900 (has links)
Compared to single-mode VCSELs, multimode VCSELs have not received much attention in models and characterizations for functional parameters,
despite making up the majority of commercially available VCSELs [1]. In particular, the extraction of the linewidth enhancement factor for multimode VCSELs has been overlooked, likely due to difficulties in measurement. Additionally, multimode models for VCSELs have, until recently, omitted spectral characteristics such as linewidth [2]. This is the first work to report a measured linewidth enhancement factor value (lower bound) for a multimode VCSEL.
A characterization for the functional parameters of a red multimode vertical-cavity surface-emitting laser (VCSEL) is shown herein. The extracted
values form a complete working set of parameters for the laser rate equations. The techniques employed for extracting values include frequency responses, power versus current fittings, and optical spectral measurements. From the frequency responses at various bias currents, the relaxation oscillation frequency and damping factor are found. The power versus current curve is fitted to find parameters including the modal spontaneous emission rate and carrier density at threshold. The spectral measurements are used for evaluating the linewidth enhancement factor (LEF) also known as the alpha factor or Henry factor. These
5
methods have been applied previously to characterizing single-mode VCSELs [3]–[5]. The experimentally extracted parameters herein are important for creating accurate models and simulations for multimode VCSELs. Improved multimode VCSEL models are necessary for improving optical communication, especially for short-range optical interconnects [2]. The measured parameters for the characterized VCSEL are comparable to similar single-mode VCSELs characterized in other works. This is promising because multi-mode VCSELs have higher output power than their single-mode counterparts, thus these results may aid in improving short-range optical interconnects.
|
13 |
Nucleation and Growth, Defect Structure, and Dynamical Behavior of Nanostructured MaterialsHubartt, Bradley C. January 2014 (has links)
No description available.
|
14 |
Nucleation and Growth in Materials and on Surfaces:Kinetic Monte Carlo Simulation and Rate Equation TheoryShi, Feng 30 September 2008 (has links)
No description available.
|
15 |
Study of Nano-structures with Applications on Single-mode LasersDeng, Lanxin 04 1900 (has links)
<p>Semiconductor laser diode has been a popular research topic for longer than half a century and plays a crucial role in optical communication systems. The work in this thesis focuses on the development of the semiconductor laser diode with rapid-evolving nanotechnologies: by incorporating specific semiconductor or metal structures in the nanometer scale into the laser cavity, several key advantages are achieved.</p> <p>One category of the nano-materials is semiconductor quantum dots (QD). QD laser is a promising product by providing three-dimensional confinement to the injected electrons and holes. However, in order to realize the single-longitudinal-mode operation, which is critical to optical communications in purpose of reducing the dispersion and partition noise, the Fabry-Perot (FP) QD laser still needs further development to suppress the gain-broadening effects; otherwise the mode-selective structure must be adopted, such as the distributed feedback (DFB) cavity. In this thesis, the QD FP laser and QD DFB laser are both researched by advanced modelling techniques and the work is summarized as follows.</p> <p>1) For the QD FP laser, a comprehensive rate-equation model has been applied for simulation, with the emphasis on describing the interplay of inhomogeneous and homogeneous gain-broadening effects. According to the laser-behaviour simulations, it is found that for each given inhomogeneous broadening, the optimum homogeneous broadening can be obtained for the single longitudinal-mode selectivity. Based on the optimal gain-broadening parameters, the single-mode QD FP laser is designed and analysed. The quantitative conditions for the performance feasibility are examined with respect to the gain-broadening parameters.</p> <p>2) A one-dimensional (1D) standing wave model is developed for the QD DFB laser. This model can provide more information for the laser operation and better describe the dynamic behaviour compared with the rate-equation model. Based on it, the statistic operation and output spectrum of a typical QD DFB laser are simulated; and then the dynamic properties of the laser are analysed.</p> <p>The other category is the metal nano-structure, including the metal nano-particle and the metal nano-strip Bragg grating. The related work is summarized as follows.</p> <p>1) The optical properties of a single metal nano-particle with different size, composition and shape are researched by Mie theory, with respect to the localized surface plasmon polariton (LSPP) effect. It shows that both the resonance wavelength and Q-factor can be tuned in a large scale by proper methods.</p> <p>2) A novel metal nano-strip distributed Bragg grating (DBR) laser is proposed and investigated theoretically. Firstly the metal nano-strip Bragg grating is simulated by the couple-mode theory and the mode-matching method. It shows that the coupling constant and reflection spectrum can be tuned to meet different requirements when varying the grating parameters. Then for the designed metal-grating DBR laser, the rate-equation simulation results show that it works under the single-mode operation for a broad range of the design parameters.<br /> <strong></strong></p> / Doctor of Philosophy (PhD)
|
16 |
High fidelity readout and protection of a 43Ca+ trapped ion qubitSzwer, David James January 2009 (has links)
This thesis describes theoretical and experimental work whose main aim is the development of techniques for using trapped <sup>43</sup>Ca⁺ ions for quantum information processing. I present a rate equations model of <sup>43</sup>Ca⁺, and compare it with experimental data. The model is then used to investigate and optimise an electron-shelving readout method from a ground-level hyperfine qubit. The process is robust against common experimental imperfections. A shelving fidelity of up to 99.97% is theoretically possible, taking 100 μs. The laser pulse sequence can be greatly simplified for only a small reduction in the fidelity. The simplified method is tested experimentally with fidelities up to 99.8%. The shelving procedure could be applied to other commonly-used species of ion qubit. An entangling two-qubit quantum controlled-phase gate was attempted between a <sup>40</sup>Ca⁺ and a <sup>43</sup>Ca⁺ ion. The experiment did not succeed due to frequent decrystallisation of the ion pair, and strong motional decoherence. The source of the problems was never identified despite significant experimental effort, and the decision was made to suspend the experiments and continue them in an improved ion trap which is under construction. A sequence of pi-pulses, inspired by the Hahn spin-echo, was derived that is capable of greatly reducing dephasing of any qubit. If the qubit precession frequency varies with time as an nth-order polynomial, an (n+1) pulse sequence is theoretically capable of perfectly cancelling the resulting phase error. The sequence is used on a 43Ca+ magnetic-field-sensitive hyperfine qubit, with 20 pulses increasing the coherence time by a factor of 75 compared to an experiment without any spin-echo. In our ambient noise environment the well-known Carr-Purcell-Meiboom-Gill dynamic-decoupling method was found to be comparably effective.
|
17 |
Modeling Simplified Reaction Mechanisms using Continuous Thermodynamics for Hydrocarbon FuelsFox, Clayton D.L. 25 April 2018 (has links)
Commercial fuels are mixtures with large numbers of components. Continuous thermodynamics is a technique for modelling fuel mixtures using a probability density function rather than dealing with each discreet component. The mean and standard deviation of the distribution are then used to model the chemical reactions of the mixture. This thesis develops the necessary theory to apply the technique of continuous thermodynamics to the oxidation reactions of hydrocarbon fuels. The theory is applied to three simplified models of hydrocarbon oxidation: a global one-step reaction, a two-step reaction with CO as the intermediate product, and the four-step reaction of Müller et al. (1992), which contains a high- and a low-temperature branch. These are all greatly simplified models of the complex reaction kinetics of hydrocarbons, and in this thesis they are applied specifically to n-paraffin hydrocarbons in the range from n-heptane to n-hexadecane. The model is tested numerically using a simple constant pressure homogeneous ignition problem using Cantera and compared to simplified and detailed mechanisms for n-heptane. The continuous thermodynamics models are able not only to predict ignition delay times and the development of temperature and species concentrations with time, but also changes in the mixture composition as reaction proceeds as represented by the mean and standard deviation of the distribution function. Continuous thermodynamics is therefore shown to be a useful tool for reactions of multicomponent mixtures, and an alternative to the "surrogate fuel" approach often used at present.
|
18 |
Analysis Of Solar Pumped Chemical Oxygen Iodine LaserBalaji, A 12 1900 (has links)
Chemical Oxygen Iodine Laser(COIL) is an electronic transition high energy chemical laser having a wavelength of 1.315 /mi. This is the first chemical laser to operate on an electronic rather than a rotational or vibrational transition. In principle the COIL can be operated either in pulsed or cw mode. Its interest lies in high chemical efficiency, high power and wavelength which is shortest among all the chemical lasers. COIL finds a wide range of applications as its output wavelength at 1.315/zm couples well with the surface of most metals. The applications include surface hardening and modification of metals, welding, drilling and cutting of metals, cutting of ceramics, micro machining, laser deposition of non metallic coatings on metallic surfaces, monitoring of atmospheric pollutants and solar hazardous waste detoxification. Moreover, its wavelength is suitable for fiber optic transmission.
In COIL the laser output at 1.315 /an is achieved by stimulated emission on the f (2-PL/2) -* -f (2-p3/2) magnetic dipole transition in atomic iodine. The population inversion on this transition is obtained by resonant collisions! energy transfer from metastable excited Oj^A) molecules produced by a chemical reaction of KOH, H2O? and Cl2. The chemical reaction of H2O2 and Cl2 that produces oxygen molecules is highly exothermic, and because of spin conservation considerations, channels its energy directly into the metastable electronically excited singlet delta state of oxygen molecule. Since the O2(1A) has a 45 mins lifetime and hence an extremely low small signal gain coefficient, it cannot be lased directly. Lasing can be achieved, however, if this energy is transferred to an atom or molecule which has a reasonable transition moment between its excited and ground states. The iodine 52P^2 -> 52P3/2 magnetic dipole transition has an acceptable transition moment and is nearly resonant with the 02{lA) state in oxygen. Excited iodine atoms are obtained by mixing O2(l A) and l2 molecules resulting in their dissociation and subsequent excitation.
Power levels in excess of 25 kW have been reported in COIL. Due to wide range of applications and mainly for its use as a laser weapon, efforts are being made to enhance the power to higher levels. The dissociation of I2 controls the gain of the coil and hence power. In the pure COIL scheme some of the I2 remains undissociated due to the recombination reactions. Hence if we add a mechanism to dissociate the residual I2 molecules, we can enhance the performance of the COIL. So we propose to add a solar pumping to conventional COIL, which by photo exciting the undissociated I2lead to increase in efficiency.
The thesis contains six chapters in which chapter 1 contains a general introduction and the definition of the research problem. The basic theory and the chemical reactions are discussed in chapter 2, The proposed model is discussed and the rate equations are solved in chapter 3. The numerical scheme and the computer code along-with the validation of the code are presented in chapter 4. The numerical results for the species concentrations, population inversion density and the output power for the proposed solar pumped COIL are presented in chapter 5, Final conclusions and future scope of the proposed research are presented in the final chapter 6.
(Pl refer the original document for formulas)
|
Page generated in 0.0838 seconds