• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iron ore pellet properties under simulated blast furnace conditions:investigation on reducibility, swelling and softening

Iljana, M. (Mikko) 30 May 2017 (has links)
Abstract A blast furnace is the dominant process for making iron in the world. Iron ore pellets are commonly used as iron burden materials in a blast furnace, in which iron oxides are reduced to metallic molten iron. While descending, the charge faces various stresses, which affect the gas flows in the shaft and the energy efficiency of the process. Charge material testing on a laboratory scale is of crucial importance in regard to the development of material quality. This doctoral thesis presents a couple of advanced novel experimental methods: a novel camera imaging method to determine the amount of swelling during reduction; a novel reducibility test to determine the reducibility in a solid state under simulated blast furnace conditions; and a novel experimental program for the ARUL reduction-softening test to more accurately simulate blast furnace conditions. Swelling tests under conditions of fixed temperature and gas composition showed that isothermal tests do not give a realistic insight into the material behaviour in a blast furnace. As a result, it is suggested that dynamic gas composition – temperature programmes simulating actual process conditions should be used. Additionally, the test results showed that circulating elements (sulphur and potassium) also affect the pellet volume change during reduction, however no abnormal swelling was observed in any of the swelling experiments. The factors affecting the high-temperature properties of iron burden materials for blast furnace use were evaluated by both the experimental methods and computational thermodynamics. It was shown that none of the studied pellet grades has as good reduction-softening properties as the fluxed sinter because of the differences in the chemistry and macro-porosity. FeO-SiO2-CaO-MgO-Al2O3 system examinations with FactSage was found to be a useful tool for predicting the softening of an iron burden material using the original chemical composition. FactSage computations suggest that the softening properties of an iron burden material can be improved either by decreasing the proportion of SiO2, increasing the proportion of MgO or introducing an appropriate amount of CaO in relation to the proportion of SiO2. / Tiivistelmä Masuuni on merkittävin raakaraudan valmistusprosessi maailmassa. Masuunissa käytetään yleisesti rautamalmipellettejä rautapanosmateriaalina. Masuunissa raudanoksidit pelkistetään metalliseksi rautasulaksi. Vajotessaan panos kohtaa monenlaisia rasitteita, joilla on vaikutusta kuilun kaasuvirtauksiin ja masuuniprosessin energiatehokkuuteen. Panosmateriaalien testaus laboratoriomittakaavassa on merkittävässä roolissa, kun niiden laatua kehitetään. Väitöskirjassa esitetään useita kehittyneitä koemenetelmiä: uusi kamerakuvausmenetelmä, jolla voidaan määrittää turpoaminen pelkistyksen edetessä; uusi pelkistyvyystesti, jolla voidaan määrittää rautapanosmateriaalin pelkistyminen kiinteässä tilassa masuunia jäljittelevissä olosuhteissa; ja uusi koeohjelma, jolla voidaan jäljitellä aiempaa tarkemmin masuuniolosuhteita sulamis-pehmenemiskokeessa. Turpoamistestit vakioiduissa olosuhteissa osoittivat, että isotermiset testit eivät anna realistista kuvaa materiaalin käyttäytymisestä masuunissa. Tämän vuoksi dynaamisia kaasukoostumus–lämpötila-ohjelmia tulisi suosia. Lisäksi tutkimustulokset osoittavat, että myös masuunissa kiertävillä komponenteilla (rikillä ja kaliumilla) on vaikutusta pelletin tilavuuden muutokseen pelkistyksessä. Yhdessäkään turpoamiskokeessa ei kuitenkaan havaittu katastrofaalista turpoamista. Masuunin rautapanosmateriaalien korkealämpötilaominaisuuksiin vaikuttavia tekijöitä arvioitiin sekä kokeellisin menetelmin että termodynaamisin laskelmin. Yhdelläkään tutkitulla pellettilaadulla ei havaittu sintterin veroisia korkealämpötilaominaisuuksia, mikä johtuu eroista kemiallisessa koostumuksessa ja makrohuokoisuudessa. FeO-SiO2-CaO-MgO-Al2O3 systeemitarkastelut rautapanosmateriaalin lähtökoostumuksella todettiin toimivaksi menetelmäksi arvioida panosmateriaalin pehmenemiskäyttäytymistä. FactSage-laskennat antavat ymmärtää, että rautapanosmateriaalin pehmenemisominaisuuksia voidaan parantaa joko vähentämällä SiO2:n osuutta, lisäämällä MgO:n osuutta tai lisäämällä CaO:ta sopiva määrä SiO2:n osuuteen nähden.
2

Bioreducer use in blast furnace ironmaking in Finland:techno-economic assessment and CO₂ emission reduction potential

Suopajärvi, H. (Hannu) 13 January 2015 (has links)
Abstract Most of the steel produced in the world is based on the integrated blast furnace-converter route, which is based on the use of virgin raw materials. Large amounts of fossil-based, carbon containing reductants are used in blast furnaces, which results in carbon dioxide emissions into the atmosphere. Fossil carbon dioxide emissions from steel production can be reduced by new technologies or moving from non-renewable to renewable energy sources. Biomass-based reductants could be one way to reduce the specific emissions from blast furnace-based steel production. The aim of this thesis was to examine the techno-economic and CO₂ mitigation potentials of using bioreducers in blast furnace ironmaking. Bioreducer feasibility was analyzed in the Finnish context, but the research methods used can be applied more widely. The metallurgical properties of bioreducers were evaluated and compared to fossil-based reductants. The impact of bioreducers on blast furnace behavior and on other steel plant processes was evaluated, with an emphasis on the reductions achieved in CO₂ emissions at the plant scale. The CO₂ emissions, energy consumption and production costs of bioreducers were evaluated, as was the availability of energy wood for bioreducer production. The results show that solid, liquid and gaseous bioreducers can be produced with thermochemical conversion technologies. However, their suitability for blast furnace use varies greatly. The highest substitution of fossil-based reductants in a blast furnace is achieved with charcoal injection. The carbon footprint of torrefied wood, charcoal and Bio-SNG is moderate compared to fossil-based reducing agents and their production is energetically feasible. The economic feasibility of bioreducers is currently weak in comparison to fossil-based reducing agents, but competitive when compared to other CO₂ emission reduction measures such as carbon capture and storage. The biomass availability assessment revealed that sufficient amount of energy wood could be available for bioreducer production in the areas where Finnish steel plants are situated. The feasibility of bioreducer production could be improved by producing a number of products from the biomass and taking advantage of the process of integration possibilities. / Tiivistelmä Suurin osa maailmassa tuotetusta teräksestä valmistetaan integroidulla masuuni-konvertteri reitillä, joka perustuu neitseellisten raaka-aineiden käyttöön. Masuuniprosessissa käytetään suuri määrä fossiilisia, lähinnä hiilipohjaisia pelkistimiä, jotka aiheuttavat hiilidioksidipäästöjä ilmakehään. Fossiilisia hiilidioksidipäästöjä voidaan teräksenvalmistuksessa vähentää uusilla teknologioilla tai siirtymällä uusiutumattomista energialähteistä uusiutuviin. Biomassasta valmistetut pelkistimet voisivat olla yksi mahdollinen keino alentaa masuunipohjaisen teräksenvalmistuksen ominaispäästöjä. Tämän työn tavoitteena oli tarkastella biopelkistimien käytön teknistaloudellista potentiaalia masuunikäytössä ja aikaansaatavia hiilidioksidipäästövähenemiä eri systeemirajauksilla. Työssä keskityttiin tarkastelemaan biopelkistimien hyödynnettävyyttä lähinnä Suomen tasolla, vaikka käytetyt tutkimusmetodit ovat sovellettavissa myös laajemmin. Työssä arvioitiin biopelkistimien metallurgisia ominaisuuksia, niiden vaikutusta masuuniprosessiin ja laajemmin muihin terästehtaan prosesseihin, pääpainon ollessa saavutettavan CO₂ päästövähenemän tarkastelussa. Työssä tarkasteltiin biopelkistimien valmistuksen CO₂ päästöjä, energiankulutusta ja tuotantokustannuksia sekä energiapuun saatavuutta biopelkistimien tuotantoon. Tulokset osoittavat, että biomassasta voidaan valmistaa kiinteitä, nestemäisiä ja kaasumaisia pelkistimiä termokemiallisilla konversioteknologioilla, joiden soveltuvuus masuunikäyttöön vaihtelee suuresti. Masuuniprosessissa suurin fossiilisten pelkistimien korvaavuus saavutetaan käyttämällä puuhiili-injektiota. Torrefioidun puun, puuhiilen ja Bio-SNG:n hiilijalanjälki on varsin maltillinen verrattuna fossiilisiin pelkistimiin ja niiden tuotanto on energeettisesti järkevää. Biopelkistimien taloudellinen kannattavuus verrattuna fossiilisiin pelkistimiin on tällä hetkellä heikko, mutta kilpailukykyinen verrattuna muihin CO₂ päästöjen vähennyskeinoihin, kuten hiilidioksidin talteenottoon ja -varastointiin. Energiapuun saatavuus biopelkistimien valmistukseen on suurin alueilla, jotka sijaitsevat lähellä Suomen terästehtaita. Biopelkistimien tuotannon kannattavuutta voitaisiin parantaa tuottamalla useita tuotteita ja hyödyntämällä prosessi-integraatiota.

Page generated in 0.0917 seconds