• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CFD modeling of auxiliary fuel injections in the blast furnace tuyere-raceway area

Vuokila, A. (Ari) 08 December 2017 (has links)
Abstract The blast furnace process is the most common way throughout the world to produce pig iron. The primary fuel and reducing agent in a blast furnace is coke. Coke is a fossil fuel and the most expensive raw material in iron production. Blast furnace ironmaking is an energy-intensive process, which results in high energy costs. Auxiliary fuels are injected into the blast furnace to replace expensive coke. They provide energy for the blast furnace operation and act as a source of reduction agents for iron oxides. Coke replacement with high auxiliary fuel injection levels leads to permeability changes in a blast furnace shaft, because of the increased amount of unburnt coal. In this thesis, fuel injection with two different auxiliary fuels, heavy oil and pulverized coal, was studied using computational fluid dynamics (CFD) modeling. The aim was to improve the combustion of auxiliary fuels by increasing the understanding of the phenomena in the blast furnace tuyere-raceway area. The atomization model for modeling the heavy oil combustion was selected and validated using the results of an experimental rig from the literature. The atomization model was applied to study the effect of different nozzles on heavy oil mixing with the air blast. In addition, the model was used to study the effect of lance position on the combustion efficiency of heavy oil. A pulverized coal combustion model was developed and validated with experimental data from the literature. Pulverized coal combustion was modeled with different lance positions to evaluate its effect on combustion efficiency. Based on the results, heavy oil mixing in the air blast can to a great extent, be boosted by the nozzle design. Furthermore, the heavy oil combustion is more efficient when the lance position is farthest from the tuyere nose. But the increasing temperature inside the tuyere causes ablation of the tuyere walls, which creates a constraint for the lance position. The results from the pulverized coal combustion study show that the model works well for the tuyere-raceway area. In addition, the effect of lance position on the combustion efficiency of the pulverized coal is very small, and the lance should be positioned as close to the tuyere nose as possible to avoid fouling of the tuyere walls and the ignition inside the tuyere. / Tiivistelmä Suurin osa maailman raakaraudasta valmistetaan masuuniprosessilla. Masuunin ensisijainen polttoaine ja rautaoksidien pelkistin on koksi. Koksi on fossiilinen polttoaine ja kallein raaka-aine masuunissa. Raudanvalmistus on erittäin energiaintensiivistä, joten valmistuksen energiakustannukset ovat korkeat. Lisäpolttoaineinjektiota käytetään masuunissa korvaamaan osa koksista sekä energian tuottajana että pelkistimenä. Injektiomäärät pyritään kasvattamaan mahdollisimman suuriksi, mutta injektiomäärien kasvaessa palamattoman kiinteän polttoaineen määrä kasvaa ja koksipatjan kaasunläpäisevyys heikkenee. Väitöskirjatutkimuksessa luotiin virtauslaskentamalli hormin ja palo-onkalon alueelle kahta lisäpolttoainetta (raskas polttoöljy, kivihiilipöly) varten. Sen avulla tutkittiin palamista hormin ja palo-onkalon alueella tavoitteena lisätä tietoa palamista rajoittavista tekijöistä. Pisaroitumismalli valittiin ja validoitiin kirjallisuusdatan perusteella raskaan polttoöljyn toimiessa lisäpolttoaineena. Mallia käytettiin tutkittaessa erilaisia suuttimia palamisilman ja polttoaineen sekoittumisen tehostamiseen. Lisäksi sitä käytettiin mallinnettaessa lanssin sijainnin vaikutusta raskaan polttoöljyn palamistehokkuuteen. Kivihiilipölylle luotiin palamismalli, joka validoitiin olemassa olevan kokeellisen datan perusteella. Tätä mallia hyödynnettiin tutkittaessa kaksoislanssin sijainnin vaikutusta palamistehokkuuteen. Tulosten perusteella voidaan todeta, että öljylanssin suuttimella on suuri vaikutus palamisilman ja polttoaineen sekoittumiseen. Lisäksi voidaan päätellä, että raskaan polttoöljyn palaminen tehostuu siirrettäessä lanssia syvemmälle hormiin, mutta syttyminen tapahtuu liian aikaisin ja kasvava lämpötila voi sulattaa hormin seinämät. Tämä aiheuttaa rajoituksen lanssin sijainnille hormissa. Kivihiilipölyn palamisen mallin todettiin toimivan erittäin hyvin hormin ja palo-onkalon alueilla. Tämän ohella havaittiin, että lanssin sijainnilla oli hyvin pieni vaikutus palamisasteeseen, jolloin lanssi kannattaa sijoittaa mahdollisimman lähelle hormin suuta, jotta vältetään hormiin kohdistuva ylimääräinen lämpökuorma ja hormin likaantuminen.
2

Coke properties in simulated blast furnace conditions:investigation on hot strength, chemical reactivity and reaction mechanism

Haapakangas, J. (Juho) 01 November 2016 (has links)
Abstract The blast furnace – basic oxygen furnace route remains the most utilised process route in the production of steel worldwide. Coke is the main fuel of the blast furnace process, however, coke producers and blast furnace operators are facing significant challenges due to increased demands on coke quality and decrease of prime coking coals. The estimation of coke performance in the industrial process through accurate laboratory analyses is of increasing importance. In this doctoral thesis, the aim was to study phenomena related to coke properties and its analysis methods in blast furnace simulating conditions. A new method was introduced to measure the hot strength of coke using a Gleeble 3800 thermomechanical simulator. The hot strengths of industrial cokes were determined at various temperatures and several coke properties, which were believed to affect hot strength, were determined. The effect of H₂ and H₂O in the blast furnace shaft gas were determined in relation to coke reactivity, threshold temperature, and the gasification mechanism. The results obtained by this thesis show that the Gleeble device is suitable for study of coke hot strength. The coke strength was significantly decreased for all three coke grades at temperatures of 1600 °C and 1750 °C when compared to room temperature or 1000 °C. The deformation behaviour of coke was fragile up to 1000 °C, but became at least partially plastic at 1600 °C, and the plasticity further increased at 1750 °C. Notable changes were observed in the deformation behaviour between coke grades at high temperatures. The presence of H₂ and H₂O in the BF shaft gas strongly increased coke reactivity and changed the reaction mechanism of coke to be more surface centric in a specific temperature range. The reactivity of coke in the conditions 100 vol-% CO₂ did not directly correlate with reactivity in a simulated blast furnace shaft gas, which suggest that the widely utilised CRI test does not accurately estimate coke reactivity in the industrial blast furnace process. / Tiivistelmä Masuuni – konvertteri yhdistelmä on edelleen käytetyin prosessireitti teräksen tuotantoon ympäri maailman. Koksi on masuunin tärkein polttoaine. Koksintuottajat ja masuunioperaattorit ovat suurten haasteiden edessä johtuen koksin kasvaneista laatuvaatimuksista ja parhaiden koksautuvien kivihiilten ehtymisestä. Koksin suoriutumisen arviointi masuunin olosuhteissa tarkoilla laboratorioanalyyseillä on yhä merkittävämmässä roolissa. Tässä väitöskirjassa tavoitteena oli tuottaa uutta tietoa koksin ominaisuuksista ja sen analyysimenetelmistä simuloiduissa masuunin olosuhteissa. Uusi metodi esitettiin koksin kuumalujuuden määrittämiseksi Gleeble 3800 termomekaanisella simulaattorilla. Teollisten koksilaatujen kuumalujuuksia määritettiin eri lämpötiloissa ja useita koksin mitattiin, joilla uskottiin olevan vaikutus kuumalujuuteen. Lisäksi työssä tutkittiin masuunin kuilun kaasuatmosfäärissä H2 ja H2O kaasujen vaikutusta koksin kemialliseen reaktiivisuuteen, kaasuuntumisen kynnyslämpötilaan ja reaktiomekanismiin. Tässä työssä esitetyt tulokset osoittavat että Gleeble soveltuu koksin kuumalujuuden määritykseen. Koksin lujuus aleni merkittävästi kaikilla kolmella koksilaadulla kuumennettaessa 1600 ja 1750 °C lämpötiloihin verrattuna huoneenlämpötilaan tai 1000 °C lämpötilaan. Koksin muodonmuutos oli haurasta aina 1000 °C lämpötilassa, mutta muuttui osittain plastiseksi 1600 °C lämpötilassa ja plastisuus kasvoi kun lämpötilaa nostettiin 1750 °C:een. Huomattavia eroja havaittiin eri koksilaatujen muodonmuutoskäyttäytymisessä korkeissa lämpötiloissa. H₂ ja H₂O kaasujen läsnäolo kuilun kaasuatmosfäärissä kasvatti voimakkaasti koksin reaktiivisuutta ja muutti kaasuuntumismekanismia pintakeskisemmäksi rajatulla lämpötila-alueella. Koksin reaktiivisuus 100 % CO₂ kaasussa ei korreloinut suoraan simuloidun masuunin kuilun kaasuatmosfäärin kanssa. Tämä tulos indikoi sitä että maailmalla yleisesti käytetty CRI testi ei ennusta tarkasti koksin reaktiivisuutta masuunissa.
3

Limiting phenomena related to the use of iron ore pellets in a blast furnace

Kemppainen, A. (Antti) 03 November 2015 (has links)
Abstract Most of the iron in the world is produced using a blast furnace process, which has iron ore (iron oxides) and coke as its raw materials. When pellets are used in a blast furnace, the iron burden material is charged in the form of pellets and fine, iron-rich by-products are charged typically in the form of cold-bonded briquettes at the top of the blast furnace. Coke is the primary fuel and reductant in the blast furnace. Coke reacts with the oxygen of the blast air and forms carbon monoxide in the up-flowing gas, which reduces the descending iron oxide burden. In addition, carbon and hydrogen bearing reductants are injected from the tuyeres in the lower part of the furnace. Hydrogen partially replaces the carbon monoxide as a reducing agent and changes the composition of the reducing gas. The high temperature properties of the burden have a significant effect on the flow of reducing gas and formation of the cohesive zone which markedly affect the furnace efficiency. The raw materials are commonly stored outdoors and therefore include moisture in varying amounts. In addition, the briquette contains chemically bound water. The rate of injected reductants, the high temperature properties and the water content of the raw materials have significant effects on blast furnace performance. They cause various phenomena in the blast furnace which set limitations on the process. The limiting phenomena related to the use of pellets in the blast furnace were studied in this doctoral thesis with the aim of obtaining additional knowledge about the limiting phenomena. The results show that hydrogen increases the reduction rate of iron oxides at temperatures below 850 °C. High water vapour concentration causes a rapid conversion through a catalysed water-gas shift reaction at above 300 °C in a gas mixture similar to the one in the upper part of the blast furnace. The reduction rate of the cold-bonded briquette is higher than pellets due to a self-reducing effect. The phase transformations occurring in the briquette during reduction follow the path of phase equilibria. The softening of the pellet is caused by the formation of melt which initiates wüstite dissolution in the surrounding slag phase. / Tiivistelmä Suurin osa maailmassa valmistettavasta raudasta tuotetaan masuuniprosessilla, jonka pääraaka-aineita ovat rautarikaste eli raudan oksidit ja koksi. Masuunissa, jossa käytetään pellettiä, rautarikaste panostetaan pelletin muodossa ja hienojakeiset rautapitoiset sivutuotteet tyypillisesti kylmäsidottuna brikettinä masuunin huipulta. Koksi on masuunin pääasiallinen polttoaine ja pelkistin, joka masuunin sisään puhallettavan ilman hapen kanssa reagoidessaan muodostaa ylöspäin virtaavaan kaasuun hiilimonoksidia, joka pelkistää masuunin kuilussa vajoavat rautaoksidit. Lisäksi yleensä käytetään hiiltä ja vetyä sisältäviä pelkistysaineita, jotka injektoidaan masuuniin alaosan hormeilta. Vety korvaa osittain hiilimonoksidia rautaoksidien pelkistimenä ja muuttaa pelkistävän kaasun koostumusta. Panosmateriaalien korkealämpötilaominaisuudet vaikuttavat suuresti kuilun kaasuvirtauksiin ja koheesiovyöhykkeen muodostumiseen masuunissa, mitkä vaikuttavat merkittävästi masuunin tehokkuuteen. Suurista määristä johtuen raaka-aineet varastoidaan usein ulkona, joten ne sisältävät kosteutta vaihtelevissa määrin. Lisäksi briketti sisältää kemiallisesti sitoutunutta vettä. Injektoitavien pelkistysaineiden käyttömäärällä, raaka-aineiden korkealämpötilaominaisuuksilla ja vesipitoisuudella on merkittäviä vaikutuksia masuunin toimintaan. Ne aikaansaavat masuunissa erilaisia ilmiöitä, jotka asettavat prosessille rajoituksia. Tässä väitöskirjassa tutkittiin näitä masuunille rajoituksia asettavia ilmiöitä ja pyrittiin lisäämään tietämystä niistä. Tulokset osoittavat, että vety nopeuttaa rautaoksidien pelkistymistä alle 850 °C lämpötilassa. Suuri vesihöyrymäärä johtaa nopeaan konversioon masuunin yläkuilun aluetta vastaavassa kaasuseoksessa yli 300 °C lämpötilassa katalysoidun vesikaasun siirtoreaktion kautta. Kylmäsidottu briketti pelkistyy pellettiä nopeammin itsepelkistymisen vaikutuksesta. Briketin pelkistyessään läpikäymät faasitransformaatiot seuraavat faasien tasapainotiloja. Pelletin pehmenemisen aiheuttaa sulan muodostuminen, joka laukaisee wüstiitin liukenemisen sitä ympäröivään sulaan kuonafaasiin.
4

Iron ore pellet properties under simulated blast furnace conditions:investigation on reducibility, swelling and softening

Iljana, M. (Mikko) 30 May 2017 (has links)
Abstract A blast furnace is the dominant process for making iron in the world. Iron ore pellets are commonly used as iron burden materials in a blast furnace, in which iron oxides are reduced to metallic molten iron. While descending, the charge faces various stresses, which affect the gas flows in the shaft and the energy efficiency of the process. Charge material testing on a laboratory scale is of crucial importance in regard to the development of material quality. This doctoral thesis presents a couple of advanced novel experimental methods: a novel camera imaging method to determine the amount of swelling during reduction; a novel reducibility test to determine the reducibility in a solid state under simulated blast furnace conditions; and a novel experimental program for the ARUL reduction-softening test to more accurately simulate blast furnace conditions. Swelling tests under conditions of fixed temperature and gas composition showed that isothermal tests do not give a realistic insight into the material behaviour in a blast furnace. As a result, it is suggested that dynamic gas composition – temperature programmes simulating actual process conditions should be used. Additionally, the test results showed that circulating elements (sulphur and potassium) also affect the pellet volume change during reduction, however no abnormal swelling was observed in any of the swelling experiments. The factors affecting the high-temperature properties of iron burden materials for blast furnace use were evaluated by both the experimental methods and computational thermodynamics. It was shown that none of the studied pellet grades has as good reduction-softening properties as the fluxed sinter because of the differences in the chemistry and macro-porosity. FeO-SiO2-CaO-MgO-Al2O3 system examinations with FactSage was found to be a useful tool for predicting the softening of an iron burden material using the original chemical composition. FactSage computations suggest that the softening properties of an iron burden material can be improved either by decreasing the proportion of SiO2, increasing the proportion of MgO or introducing an appropriate amount of CaO in relation to the proportion of SiO2. / Tiivistelmä Masuuni on merkittävin raakaraudan valmistusprosessi maailmassa. Masuunissa käytetään yleisesti rautamalmipellettejä rautapanosmateriaalina. Masuunissa raudanoksidit pelkistetään metalliseksi rautasulaksi. Vajotessaan panos kohtaa monenlaisia rasitteita, joilla on vaikutusta kuilun kaasuvirtauksiin ja masuuniprosessin energiatehokkuuteen. Panosmateriaalien testaus laboratoriomittakaavassa on merkittävässä roolissa, kun niiden laatua kehitetään. Väitöskirjassa esitetään useita kehittyneitä koemenetelmiä: uusi kamerakuvausmenetelmä, jolla voidaan määrittää turpoaminen pelkistyksen edetessä; uusi pelkistyvyystesti, jolla voidaan määrittää rautapanosmateriaalin pelkistyminen kiinteässä tilassa masuunia jäljittelevissä olosuhteissa; ja uusi koeohjelma, jolla voidaan jäljitellä aiempaa tarkemmin masuuniolosuhteita sulamis-pehmenemiskokeessa. Turpoamistestit vakioiduissa olosuhteissa osoittivat, että isotermiset testit eivät anna realistista kuvaa materiaalin käyttäytymisestä masuunissa. Tämän vuoksi dynaamisia kaasukoostumus–lämpötila-ohjelmia tulisi suosia. Lisäksi tutkimustulokset osoittavat, että myös masuunissa kiertävillä komponenteilla (rikillä ja kaliumilla) on vaikutusta pelletin tilavuuden muutokseen pelkistyksessä. Yhdessäkään turpoamiskokeessa ei kuitenkaan havaittu katastrofaalista turpoamista. Masuunin rautapanosmateriaalien korkealämpötilaominaisuuksiin vaikuttavia tekijöitä arvioitiin sekä kokeellisin menetelmin että termodynaamisin laskelmin. Yhdelläkään tutkitulla pellettilaadulla ei havaittu sintterin veroisia korkealämpötilaominaisuuksia, mikä johtuu eroista kemiallisessa koostumuksessa ja makrohuokoisuudessa. FeO-SiO2-CaO-MgO-Al2O3 systeemitarkastelut rautapanosmateriaalin lähtökoostumuksella todettiin toimivaksi menetelmäksi arvioida panosmateriaalin pehmenemiskäyttäytymistä. FactSage-laskennat antavat ymmärtää, että rautapanosmateriaalin pehmenemisominaisuuksia voidaan parantaa joko vähentämällä SiO2:n osuutta, lisäämällä MgO:n osuutta tai lisäämällä CaO:ta sopiva määrä SiO2:n osuuteen nähden.
5

Bioreducer use in blast furnace ironmaking in Finland:techno-economic assessment and CO₂ emission reduction potential

Suopajärvi, H. (Hannu) 13 January 2015 (has links)
Abstract Most of the steel produced in the world is based on the integrated blast furnace-converter route, which is based on the use of virgin raw materials. Large amounts of fossil-based, carbon containing reductants are used in blast furnaces, which results in carbon dioxide emissions into the atmosphere. Fossil carbon dioxide emissions from steel production can be reduced by new technologies or moving from non-renewable to renewable energy sources. Biomass-based reductants could be one way to reduce the specific emissions from blast furnace-based steel production. The aim of this thesis was to examine the techno-economic and CO₂ mitigation potentials of using bioreducers in blast furnace ironmaking. Bioreducer feasibility was analyzed in the Finnish context, but the research methods used can be applied more widely. The metallurgical properties of bioreducers were evaluated and compared to fossil-based reductants. The impact of bioreducers on blast furnace behavior and on other steel plant processes was evaluated, with an emphasis on the reductions achieved in CO₂ emissions at the plant scale. The CO₂ emissions, energy consumption and production costs of bioreducers were evaluated, as was the availability of energy wood for bioreducer production. The results show that solid, liquid and gaseous bioreducers can be produced with thermochemical conversion technologies. However, their suitability for blast furnace use varies greatly. The highest substitution of fossil-based reductants in a blast furnace is achieved with charcoal injection. The carbon footprint of torrefied wood, charcoal and Bio-SNG is moderate compared to fossil-based reducing agents and their production is energetically feasible. The economic feasibility of bioreducers is currently weak in comparison to fossil-based reducing agents, but competitive when compared to other CO₂ emission reduction measures such as carbon capture and storage. The biomass availability assessment revealed that sufficient amount of energy wood could be available for bioreducer production in the areas where Finnish steel plants are situated. The feasibility of bioreducer production could be improved by producing a number of products from the biomass and taking advantage of the process of integration possibilities. / Tiivistelmä Suurin osa maailmassa tuotetusta teräksestä valmistetaan integroidulla masuuni-konvertteri reitillä, joka perustuu neitseellisten raaka-aineiden käyttöön. Masuuniprosessissa käytetään suuri määrä fossiilisia, lähinnä hiilipohjaisia pelkistimiä, jotka aiheuttavat hiilidioksidipäästöjä ilmakehään. Fossiilisia hiilidioksidipäästöjä voidaan teräksenvalmistuksessa vähentää uusilla teknologioilla tai siirtymällä uusiutumattomista energialähteistä uusiutuviin. Biomassasta valmistetut pelkistimet voisivat olla yksi mahdollinen keino alentaa masuunipohjaisen teräksenvalmistuksen ominaispäästöjä. Tämän työn tavoitteena oli tarkastella biopelkistimien käytön teknistaloudellista potentiaalia masuunikäytössä ja aikaansaatavia hiilidioksidipäästövähenemiä eri systeemirajauksilla. Työssä keskityttiin tarkastelemaan biopelkistimien hyödynnettävyyttä lähinnä Suomen tasolla, vaikka käytetyt tutkimusmetodit ovat sovellettavissa myös laajemmin. Työssä arvioitiin biopelkistimien metallurgisia ominaisuuksia, niiden vaikutusta masuuniprosessiin ja laajemmin muihin terästehtaan prosesseihin, pääpainon ollessa saavutettavan CO₂ päästövähenemän tarkastelussa. Työssä tarkasteltiin biopelkistimien valmistuksen CO₂ päästöjä, energiankulutusta ja tuotantokustannuksia sekä energiapuun saatavuutta biopelkistimien tuotantoon. Tulokset osoittavat, että biomassasta voidaan valmistaa kiinteitä, nestemäisiä ja kaasumaisia pelkistimiä termokemiallisilla konversioteknologioilla, joiden soveltuvuus masuunikäyttöön vaihtelee suuresti. Masuuniprosessissa suurin fossiilisten pelkistimien korvaavuus saavutetaan käyttämällä puuhiili-injektiota. Torrefioidun puun, puuhiilen ja Bio-SNG:n hiilijalanjälki on varsin maltillinen verrattuna fossiilisiin pelkistimiin ja niiden tuotanto on energeettisesti järkevää. Biopelkistimien taloudellinen kannattavuus verrattuna fossiilisiin pelkistimiin on tällä hetkellä heikko, mutta kilpailukykyinen verrattuna muihin CO₂ päästöjen vähennyskeinoihin, kuten hiilidioksidin talteenottoon ja -varastointiin. Energiapuun saatavuus biopelkistimien valmistukseen on suurin alueilla, jotka sijaitsevat lähellä Suomen terästehtaita. Biopelkistimien tuotannon kannattavuutta voitaisiin parantaa tuottamalla useita tuotteita ja hyödyntämällä prosessi-integraatiota.

Page generated in 0.0266 seconds