• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 15
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 111
  • 111
  • 51
  • 26
  • 17
  • 14
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Reactive milling of organic compounds

Li, Ying Yu Unknown Date (has links)
Persistent organic pollutants are a well-known threat to the environment. Substances such as polycyclic aromatic hydrocarbons and chlorinated organic compounds in contaminated soil and groundwater can have severe and long-lasting effects on health in animals and humans. There is an urgent need for the development of safe technologies for their effective removal. Originally developed for mineral processing, mechanical treatment by ball milling is an extremely versatile technique for the degradation of toxic compounds. Reactive milling can rapidly destroy organic compounds without producing hazardous wastes. Complete breakdown of the organic molecules is achieved after relatively short milling times. Successful tests were conducted on polychlorobiphenyls (PCBs), DDT, DDD, DDE, Dieldrin and hexachlorobenzene with a conversion yield in the of greater than 99% (Hall et al., 1996; Monagheddu et al., 2000; Zhang et al., 2001; Zhang et al., 2002; Tanaka and Zhang, 2003; Pizzigallo et al., 2004; Nomura et al., 2005; Bellingham, 2006).In this study reactive ball milling was used to investigate the destruction of two classes of persistent organic pollutants environmental contaminants. The compounds studied are either known environmental pollutants or simple analogues. These were chosen as being representative of pollutants to investigate the pathway using ball milling destruction and in most cases were relatively small molecules so that the intermediates could be more easily identified. The first class of compounds was polycyclic aromatic compounds. Some smaller members of this class such as naphthalene, anthracene were investigated. The second class of compounds were some analogues of environmentally hazardous hydroxylated and halogenated compounds such as chloronaphthalene, bromonaphthalene, 1- naphthol, 2-naphthol and pentachlorophenol under reactive milling using GCMS analysis of the degradation pathway. Destruction efficiencies greater than 99% have been achieved for a number of organic compounds. Several different intermediates have been identified during the milling degradation. There was also some evidence from this study that halogens could be transferred between compounds during milling. The final products of the milling destruction of these compounds are an amorphous carbon residue and inorganic chloride or bromides. It was proposed that large amounts of halogens could be found however the results showed that small amounts detected. At early stages of milling a number of intermediate breakdown products were detected which were destroyed on extended milling. The core objective of this research was to clarify the reaction mechanisms pathways used of more complex polycyclic aromatic hydrocarbons and aromatic organ halogen compounds. This study is a part of a long-term research project on the destruction of toxic organic compounds by reactive milling.
32

The design, synthesis of potential sialidase inhibitors as anti-influenza drugs and synthesis of C-2 symmetric ligands for transition metal catalyzed asymmetric reduction reactions

Liu, Chang, January 2006 (has links)
Thesis (M.S.)--Michigan State University. Dept. of Chemistry, 2006. / Title from PDF t.p. (viewed on June 19, 2009) Includes bibliographical references. Also issued in print.
33

Array-based vapor sensing using conductive carbon black-polymer composite thin film detectors : thesis /

Severin, Erik Jon. January 1999 (has links)
Thesis (Ph.D.)--California Institute of Technology, 1999. / "UMI number: 9941121"--T.p. verso. Includes bibliographical references. Also available on microfilm. On-line version available via Caltech Library System.
34

Mass Spectrometric Study of Visible-Light Triggered Photoredox and Electrolytic Reaction Mechanisms

Zhang, Yuexiang 01 October 2018 (has links)
No description available.
35

Isotope Effects and the Question of Reaction Mechanisms: A study of the Tschugaeff Reaction

Bader, Richard F.W. 09 1900 (has links)
Three simultaneous isotope effects have been determined for the Tschugaeff reaction, i.e., the thermal decomposition of an xanthate ester. The ratio of the rate constants, k32/k34, was found to be 1.009 for the thion sulphur atom and 1.002 for the thio-ether sulphur atom. The rate ratio k12/k13, for the xanthate carbon atom was found to have a value of 1.000. The findings of previous investigators of the Tschugaeff reaction had been consistent with either of two mechanisms. However, with the determination of the isotope effects referred to above, it has been possible to distinguish between the two possible mechanisms and to gain considerable information about the transition state of the Tschugaeff reaction. The measured isotope effects have been discussed in terms of Bigeleisen's isotopic rate equation. In addition, it has been possible to carry out theoretical calculations for each reaction mechanism by assuming an appropriate potential function and in this manner make the interpretation of the measured isotope effects more quantitative. / Thesis / Master of Science (MS)
36

A study of the displacement of halogen from chlorinated heteroaromatic azines by dialkali salts of benzoylacetone, disodio salts of certain 2-hydroxy-4-methylpyrimidines, and the methylsulfinyl carbanion

Greene, James Carson 25 August 2008 (has links)
Halogenated monocyclic and bicyclic heteroaromatic azines, possessing a six or ten w-electron system and one or two ring nitrogens, have been shown to undergo nucleophilic displacement of halide ion with a variety of nucleophiles. A detailed review of the relative reactivity of compounds of these classes, as well as halogenated heteroaromatic azines containing as many as four nitrogen atoms has appeared. / Ph. D.
37

Potential Prodrugs of the Neuronal Nitric Oxide Synthase and Monoamine Oxidase Inhibitor 7-Nitroindazole and Structurally Related Compounds

Isin, Emre M. 06 December 2000 (has links)
Parkinson's disease (PD) is a progressive neurodegenerative disorder of unknown cause that afflicts about 1.5 million Americans. The characteristic feature of PD is a deficiency of dopamine in the terminals of nigrostriatal neurons. Two enzyme systems, the neuronal form of nitric oxide synthase (nNOS) and monoamine oxidase B (MAO-B), have been linked to neurodegenerative pathways leading to PD. Several MAO-B and nNOS inhibitors have been evaluated for their neuroprotective properties in the mouse model of neurodegeneration which employs the parkinsonian inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). One such compound is 7-nitroindazole (7-NI), a compound which is reported to inhibit both enzymes. This thesis focuses on the synthesis and biological evaluation of a potential prodrug form of 7-NI and related indazolyl containing compounds which are designed to release the active drugs following a metabolic bioactivation process. These studies have led to a detailed description of the nucleophilic aromatic substitution reactions between 4-chloro-1-methylpyridinium iodide and the indazolyl reactants that were employed as the initial step in the synthesis of the target compounds. The MAO-B substrate and inhibition properties of these "prodrugs" as well as the parent indazolyl compounds were examined. The results are discussed in relation to a previously developed active site model of MAO-B. / Master of Science
38

1,4‐Addition of TMSCCl3 to nitroalkenes: efficient reaction conditions and mechanistic understanding

02 June 2020 (has links)
Yes / Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70 %) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4‐additions to a range of cyclic and acyclic nitroalkenes, in THF at 0–25 °C, typically in moderate to excellent yields (37–95 %). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies (1H, 19F, 13C and 29Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M ) at −20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from −20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at −20 °C), when treated with TBAT, leads to immediate formation of the 1,4‐addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3− addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2=NO2] is an efficient promoter. Use of H2C=CH(CH2)2CH=CHNO2 in air affords radical‐derived bicyclic products arising from aerobic oxidation. / Engineering and Physical Sciences Research Council (EPSRC) Grant EP/K000578/1.
39

Metal oxide-facilitated oxidation of antibacterial agents

Zhang, Huichun 08 July 2004 (has links)
Metal oxide-facilitated transformation is likely an important degradation pathway of antibacterial agents at soil-water interfaces. Phenolic disinfectants (triclosan and chlorophene), fluoroquinolones (FQs), and aromatic N-oxides are of particular concern due to their widespread usage, potential toxicity and frequent detection in the environment. Results of the present study show that the above antibacterial agents are highly susceptible to metal oxide-facilitated oxidation. The interfacial reactions exhibit complex reaction kinetics, which are affected by solution pH, the presence of co-solutes, surface properties of metal oxides, and structural characteristics of antibacterial agents. Adsorption of the antibacterial agents to Mn and Fe oxide surfaces generally proceeds faster than oxidation reactions of these compounds by Mn and Fe oxides, especially in the case of Fe oxides. Reaction intermediates and end products are identified by GC/MS, LC/MS and/or FTIR. Structurally-related model compounds are examined to facilitate reaction site and mechanism elucidation. On the basis of experimental results and literature, reaction schemes are proposed. In general, the antibacterial agent is adsorbed to the oxide surface, forming a precursor complex. Electrons are transferred within the precursor complex from the antibacterial agent to the oxide, followed by releasing of the radical intermediates which undergo further reactions to generate oxidation products. The precursor complex formation and electron transfer are likely rate-limiting. For triclosan, phenoxy radicals are critical intermediates to form oxidation products through three pathways (i.e., radical coupling, further oxidation of the radical, and breakdown of an ether bond within the radical). The first two pathways are also operative in the oxidation of chlorophene. For FQs, oxidation generates radical intermediates that are most likely centered on the inner N in the piperazine ring. The radical intermediates then undergo three major pathways (i.e., radical coupling, N-dealkylation, and hydroxylation) to yield a variety of products. For aromatic N-oxides, a N-oxide radical intermediate is generated upon oxidation by MnO2, followed by the loss of oxygen from the N-oxide moiety and the formation of a hydroxyl group at the C-atom adjacent to the N-oxide moiety. Overall, a fundamental understanding of the reaction mechanisms between three classes of antibacterial agents and metal oxides has been obtained.
40

A Computational Investigation of the Biosynthesis of Lanosterol

Townsend, Michael Arthur Edward January 2006 (has links)
The biosynthesis of the steroid precursor molecule lanosterol is a remarkable process in which the enzyme-bound substrate 2,3-S-oxidosqualene forms four new carbocyclic rings by a cascade of cation-alkene addition reactions, followed by a series of 1,2-methyl and hydride shifts. The work presented in this thesis is a computational study of the reactions of compounds designed to model the oxidosqualene-lanosterol cyclisation in order to establish details of the mechanism of this amazing cyclisation. The initiation of oxidosqualene cyclisation has been modelled by the intermolecular reaction of protonated oxirane and methylpropene. The SN2-like ring opening of the protonated epoxide is strongly exothermic with a low barrier to reaction; the geometry of the gas phase reaction has been found to be significantly affected by hyperconjugative stabilisations and low energy steric interactions. The energy profile and geometry of this reaction can now be compared to analogous intramolecular reactions such as the formation of the lanosterol A-ring. The competing five- and six-membered cyclisations of a series of substituted A-ring model compounds was investigated. It has been found that the facile cleavage of the protonated epoxide causes the reaction to behave more as an electrophilic addition than as a nucleophilic ring-opening substitution. This behaviour accounts for the general preference of protonated epoxides to react at the more substituted carbon atom, while epoxides in neutral or basic media react at the least sterically hindered carbon. With consideration for Baldwin's rules for ring closure, it is seen that the series of model compounds generally favours six-membered ring formation endo at the epoxide. The formation of the lanosterol B-ring was studied using a bicyclic model system. Previous computational studies had predicted the B-ring to close with readily with an activation energy of less than 1 kcal mol-1, however the present study has found a significant barrier to cyclisation of ca. 5-7 kcal mol-1 in this gas-phase model at the HF/6-31G(d) level of theory. This barrier is thought to arise from the closure of the B-ring in a sterically hindered twist-boat conformation.

Page generated in 0.0927 seconds