• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 619
  • 613
  • 155
  • 112
  • 44
  • 31
  • 27
  • 19
  • 10
  • 10
  • 9
  • 8
  • 4
  • 4
  • 3
  • Tagged with
  • 2300
  • 467
  • 407
  • 307
  • 278
  • 252
  • 237
  • 213
  • 206
  • 204
  • 181
  • 159
  • 159
  • 151
  • 149
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

X-10 reactor forensic analysis and evaluation using a suite of neutron transport codes

Redd, Evan M. 21 September 2015 (has links)
X-10, the genesis production reactor for the U.S. paved the way for all weapons material production. This feat offers a unique fundamental opportunity of nuclear forensic analysis and popular neutron code package evaluation. Production reactor nuclear forensic signatures and characteristics are emphasized throughout this work. These underlying production characteristics are reported and analyzed for potential in-core zone provenance and axial slug location coupled with how the nuclear data uncertainties affect these conclusions. Material attribution with respect to commercial versus military reactor applications is also featured in this study. Three nuclear code packages are examined including Scale 6.1 (Scale 6.2 beta-3 for nuclear data uncertainty reporting and evaluation), Monte Carlo N-Particle (MCNP) and Parallel Environment Neutral-particle TRANsport (PENTRAN). Each of these code packages employs different neutron transport methods and cross-section evaluation. These code results are compared and contrasted for the researcher to gain perspective into if and how nuclear forensic analysis is affected by these relative outcomes from the neutronics packages. Notably, Scale 6.2 beta-3 offers perspective on the nuclear data uncertainty and how it affects final conclusions on isotopic reporting and material provenance.
192

Performance evaluation of coprocessed light water reactor fuel

Patrashakorn, Sunanta January 1979 (has links)
No description available.
193

Definition and characterization of non high-level waste in the thorium fuel cycle

Parker, Steven Ray January 1979 (has links)
No description available.
194

An economic evaluation of the recovery of krypton and xenon from nuclear fuels reprocessing plants

Boyum, Bruce Montgomery, 1947- January 1971 (has links)
No description available.
195

A novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

Yang, Terris Tianxue 11 1900 (has links)
An integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean-burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has then been validated in a novel internal circulating fluidized bed. The adsorption and reaction performance of Fe/ZSM-5 for the selective catalytic reduction (SCR) of NOx with propylene was investigated in a fixed bed reactor. The fine Fe/ZSM-5(Albemarle) catalyst showed reasonable NOx adsorption capacity, and the adsorption performance of the catalyst was closely related to the particle size and other catalyst properties. Fe/ZSM-5 catalyst was sensitive to the reaction temperature and space velocity, and exhibited acceptable activity when O₂ concentration was controlled at a low level. Water in the flue gas was found to slightly enhance the reactivity of Fe/ZSM-5(Albemarle), while the presence of CO₂ showed little effect. SO₂ severely inhibited the reactivity of Fe/ZSM-5(Albemarle), and the deactivated catalyst could be only partially regenerated. Configurations of the reactor influenced the hydrodynamic performance significantly in a cold model internal circulating fluidized bed (ICFB) reactor. For all configurations investigated, the high gas bypass ratio from the annulus to draft tube (RAD) and low draft tube to annulus gas bypass ratio (RDA) were observed, with the highest RDA associated with the conical distributor which showed the flexible and stable operation over a wide range of gas velocities. Solids circulation rates increased with the increase of gas velocities both in the annulus and the draft tube. Gas bypass was also studied in a hot model ICFB reactor. The results showed that the orientation of perforated holes on the conical distributor could be adjusted to reduce RAD and/or enhance RDA. Coarse Fe/ZSM-5(PUC) and fine Fe/ZSM-5(Albemarle) catalysts were used in an ICFB and a conventional bubbling fluidized bed to test the NOx reduction performance. Coarse Fe/ZSM-5(PUC) catalyst showed poor catalytic activity, while fine Fe/ZSM-5(Albemarle) catalyst exhibited promising NOx reduction performance and strong inhibiting ability to the negative impact of excessive O₂ in the ICFB reactor, proving that the adsorption-reduction two-zone reactor is effective for the NOx removal from oxygen-rich combustion flue gases.
196

A numerical study of an autothermal reformer for the production of hydrogen from Iso-octane

Sylvestre, Steven W. J. 12 September 2007 (has links)
The development of an auxiliary power unit (APU) capable of providing climate control and electricity in long haul trucks is of significant interest due to the expected economic and environmental benefits. A potentially efficient and environmentally friendly APU design is one based on the use of an autothermal fuel reformer that converts on-board truck fuel to a hydrogen rich gas that directly fuels a solid oxide fuel cell unit. To assist in the development of such a unit a numerical study of the autothermal reforming of iso-octane in a compact tubular reactor has been undertaken. This was done to determine the reactor performance and the factors that potentially influence its performance. Variations in the wall thermal conductivity, the catalyst thermal conductivity, the catalyst porosity, the conditions of the inlet reactant gas, and the effectiveness factor of the chemical reaction mechanism have been studied to determine their effects on the performance of the reformer. It has been found that higher thermal conductivities of the outer wall and in the catalyst region gave increased dry hydrogen yield and fuel conversion. The study of the effects of inlet species concentration ratios indicated that maximum hydrogen yield was obtained with an oxygen-to-fuel ratio between 1.0 and 1.15 and a steam-to-fuel ratio of approximately 3.0. Results obtained with various inlet species temperatures and bed porosities showed only small changes in the reformer performance. While the results obtained here do provide useful information about the performance of the autothermal reformer, the model used has been re-assessed and it is recommended that an improved model be used in future work. In particular, the assumed effectiveness factors for all of the chemical reactions occurring in the catalyst region need to be improved. This was highlighted by the fact that a brief study indicated a very strong dependence of the reformer product gas composition on the effectiveness factor. This indicates that while the present model is able to predict trends in the reformer performance, it is limited in its accuracy due to the fact that the effectiveness factor used is only approximately known. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2007-08-31 13:22:27.466
197

Development of a Hydrogen Producing Thermal Control for Chemical Hydrogen Storage

St. John, Adam 13 December 2007 (has links)
This thesis investigated a potential improvement to hydrogen storage for fuel cells using a thermally efficient hydrogen storage method. The efficiency of the storage system was improved using a metal hydride system to act as a thermal control unit for an exothermic chemical hydrogen storage system. A cylindrical shaped “hybrid” reactor was created to allow hydrogen production from a sodium borohydride packed bed reactor and the metal hydride. Additionally, a custom built pressure-composition-temperature apparatus was built to record the amount of hydrogen desorption from the metal hydride while isolating the metal from potential poisons such as oxygen. Before using the chemical hydride packed bed, heat transfer through the reactor was studied using circulating water. The water experiments showed that an increase in heat flux to the reactor led to a faster desorption rate of hydrogen from the metal hydride resulting in a larger temperature drop throughout the reactor. After the operating characteristics of the hybrid reactor were studied, a 10 wt% solution of sodium borohydride was created and pumped through the packed bed to produce enough hydrogen for a 300 W fuel cell. The amount of heat produced from the packed bed portion of the reactor was significant, but temperatures levelled to around 80 °C. As expected, temperature control was directly proportional to the rate of hydrogen release from the metal hydride. On average, approximately 10% of the available heat energy was transferred to the metal hydride, and the hybrid reactor operated with gravimetric and volumetric energy densities of 0.27 kWh·kg-1 and 1.29 kWh·L-1 respectively. If the hybrid reactor is used solely to control peak temperatures, the amount of metal hydride necessary for thermal control could be decreased. Additionally, improvements in heat transfer as well as the hydrogen storage materials themselves would increase the energy density values further. When compared to other energy storage devices, the hybrid reactor without improvements is competitive as a backup power generator due to its silent operation and large volumetric energy density. Since the hybrid reactor can provide quiet and cool energy storage in a relatively small volume, it may become an effective and efficient means for hydrogen storage with limited improvements. / Thesis (Master, Mining Engineering) -- Queen's University, 2007-12-06 14:45:56.551 / AUTO21
198

Two Stage Membrane Biofilm Reactors for Nitrification and Hydrogenotrophic Denitrification

Hwang, Jong Hyuk 09 February 2010 (has links)
Membrane biofilm reactors (MBfR) utilize membrane fibers for bubble-less transfer of gas by diffusion and provide a surface for biofilm development. Nitrogen removal was attempted using MBfR in various configurations - nitrification, denitrification and consecutive nitrification and denitrification. Effects of loading rate and dissolved oxygen on nitrification performance were primarily investigated in a stand-alone nitrifying MBfR. Specific nitrification rate increased linearly with specific loading rate, up to the load of 3.5 g N/m²d. Beyond that load, substrate diffusion limitation inhibited further increase of specific nitrification rate. 100% oxygen utilization was achievable under limited oxygen supply condition. Effects of mineral precipitation, dissolved oxygen and temperature on hydrogenotrophic denitrification were investigated in a stand-alone denitrifying MBfR. Mineral precipitation, caused by intended pH control, caused the deterioration of denitrification performance by inhibiting the diffusion of hydrogen and nitrate. Operating reactor in various dissolved oxygen conditions showed that the denitrification performance was not affected by dissolved oxygen in MBfR. Optimum temperature of the hydrogenotrophic denitrification system was around 28°C. Total nitrogen removal in a two-step MBfR system incorporating sequential nitrification and hydrogen-driven autotrophic denitrification was investigated in order to achieve nitrogen removal by autotrophic bacteria alone. Long-term stable operation, which proved difficult in previous studies due to excessive biofilm accumulation in autotrophic denitrification systems, was attempted by biofilm control. Nitrification performance was very stable throughout the experimental periods over 200 days. Performance of autotrophic denitrification was maintained stably throughout the experimental periods, however biofilm control by nitrogen sparging was required for process stability. Biofilm thickness was also stably maintained at an average of 270 µm by the gas sparging biofilm control. According to the cost analysis of denitrifying MBfR, hydrogenotrophic denitrification can be an economical tertiary treatment option compared to conventional denitrifying filter although its economic feasibility highly depends on the cost of hydrogen gas. Although this study was conducted in a lab-scale, the findings from this study can be a valuable stepping stone for larger scale application and open the door for system modifications in future.
199

Acidic high-level liquid waste processing for improved management, actinide product utilization and fuel safeguards

Hubert, Richard Gregory 12 1900 (has links)
No description available.
200

Multi-group, multi-dimensional investigations of the power spectral densities of the Georgia Tech Research Reactor and the fast-thermal Argonaut reactor

Renier, Jean-Paul Armand 08 1900 (has links)
No description available.

Page generated in 0.0481 seconds