Spelling suggestions: "subject:"reaktiven sputter"" "subject:"reaktiven sputtering""
1 |
Simulation des reaktiven Magnetron-Sputterns /Pflug, Andreas. January 2007 (has links)
Universiẗat, Diss., 2006--Giessen.
|
2 |
Magnetronsputtern von hochleitfähigen ZnO:Al-Schichten für die PhotovoltaikRuske, Florian January 2009 (has links)
Zugl.: Giessen, Univ., Diss., 2009
|
3 |
An Investigation of Target Poisoning during Reactive Magnetron SputteringGüttler, Dominik 23 April 2009 (has links) (PDF)
Objective of the present work is a broad investigation of the so called "target poisoning" during magnetron deposition of TiN in an Ar/N2 atmosphere. Investigations include realtime in-situ ion beam analysis of nitrogen incorporation at the Ti sputter target during the deposition process and the analysis of particle uxes towards and from the target by means of energy resolved mass spectrometry. For experiments a planar, circular DC magnetron, equipped with a 2 inch titanium target was installed in an ultrahigh vacuum chamber which was attached to the beam line system of a 5 MV tandem accelerator. A manipulator allows to move the magnetron vertically and thereby the lateral investigation of the target surface. During magnetron operation the inert and reactive gas flow were adjusted using mass flow controllers resulting in an operating pressure of about 0.3 Pa. The argon flow was fixed, whereas the nitrogen flow was varied to realize different states of target poisoning. In a fi?rst step the mass spectrometer was used to verify and measure basic plasma properties e.g. the residual gas composition, the behavior of reactive gas partial pressure, the plasma potential and the dissociation degree of reactive gas molecules. Based on the non-uniform appearance of the magnetron discharge further measurements were performed in order to discuss the role of varying particle fluxes across the target during the poisoning process. Energy and yield of sputtered particles were analyzed laterally resolved, which allows to describe the surface composition of the target. The energy resolving mass spectrometer was placed at substrate position and the target surface was scanned by changing the magnetron position correspondingly. It was found, that the obtained energy distributions (EDF) of sputtered particles are influenced by their origin, showing signi?ficant differences between the center and the erosion zone of the target. These results are interpreted in terms of laterally different states of target poisoning, which results in a variation of the surface binding energy. Consequently the observed energy shift of the EDF indicates the metallic or already poisoned fraction on target surface. Furthermore the EDF's obtained in reactive sputtering mode are broadened. Thus a superposition of two components, which correspond to the metallic and compound fractions of the surface, is assumed. The conclusion of this treatment is an discrete variation of surface binding energy during the transition from metallic to compound target composition. The reactive gas target coverage as derived from the sputtered energy distributions is in reasonable agreement with predictions from model calculations. The target uptake of nitrogen was determined by means of ion beam analysis using the 14N(d, )12C nuclear reaction. Measurements at varying nitrogen gas flow directly demonstrate the poisoning eff?ect. The reactive gas uptake saturates at a maximum nitrogen areal density of about 1.1016 cm-2 which corresponds to the stoichiometric limit of a 3 nm TiN layer. At sufficiently low reactive gas flow a scan across the target surface discloses a pronounced lateral variation of target poisoning, with a lower areal density in the target race track compared to the target center and edge. Again the findings are reproduced by model calculations, which confirm that the balance of reactive gas injection and sputter erosion is shifted towards erosion in the race track. Accomplished computer simulations of the reactive sputtering process are similar to Berg's well known model. Though based on experimental findings the algorithm was extended to an analytical two layer model which includes the adsorption of reactive gas as well as its different kinds of implantation. A distribution of ion current density across the target diameter is introduced, which allows a more detailed characterization of the processes at the surface. Experimental results and computer simulation have shown that at sufficiently low reactive gas flow, metallic and compound fractions may exist together on the target surface, which is in contradiction to previous simulations, where a homogeneous reactive gas coverage is assumed. Based on the results the dominant mechanisms of nitrogen incorporation at different target locations and at varying reactive gas admixture were identified. / Gegenstand der Arbeit ist die Untersuchung der Targetvergiftung beim reaktiven Magnetronsputtern von TiN in Argon-Sticksoff Atmosphäre. Die Untersuchungen beinhalten die Echtzeit in-situ Ionenstrahlanalyse des Stickstoffeinbaus in das Titantarget während des Depositionsprozesses sowie die Analyse der Teilchenflüsse vom – und hin zum Sputtertarget mittels energieaufgelöster Massenspektrometrie. Das Magnetron wurde in einer Vakuumkammer installiert, welche an die Beamline des 5 MV Tandembeschleunigers angeschlossen war. Die Position des Magnetrons konnte mittels eines Manipulator verändert werden, was die laterale Untersuchung der Targetoberfläche ermöglichte. Während des Magnetronbetriebes wurde der Argonfluss in die Kammer konstant gehalten, während der Stickstofffluss variiert wurde um verschiedene Ausprägungen der Targetvergiftung zu erreichen. In einem ersten Schritt wurden die Eigenschaften des Plasmas, z.B. die Zusammensetzung des Sputtergases, das Verhalten des Reaktivgaspartialdruckes, das Plasmapotenzial und der Dissoziationsgrad der Reaktivgasmoleküle im Plasma, mit dem Massenspektrometer ermittelt. Aufgrund der ungleichmäßigen Gasentladung vor dem Magnetrontarget, wurden auch lateral variierende Teilchenflüssen und eine ungleichmäßige Targetvergiftung angenommen. Die Energie und die Ausbeute von gesputterten Teilchen wurde deshalb lateral aufgelöst untersucht. Das Massenspektrometer wurde zu diesem Zweck am Ort des Substrates positioniert und die Targetoberfläche konnte gescannt werden indem die Magnetronposition verändert wurde. Die so aufgenommenen Energieverteilungen der gesputterten Teilchen zeigen eine räumliche Abhängigkeit. Teilchen die aus dem Targetzentrum stammen unterscheiden sich hinsichtlich ihrer Energie signifikant von den Teilchen die in der Target-Erosionszone gesputtert werden. Dieses Resultat zeigt die ungleichmäßige Targetvergiftung, wodurch es zu einer Veränderung der Oberflächenbindungsenergie kommt. Über die Verschiebung in der Energieverteilung lässt sich somit der Zustand der Targetoberfläche beschreiben. Diese experimentellen Ergebnisse zeigen Übereinstimmung mit den Ergebnissen der Modellrechnungen. Der Stickstoffgehalt des Targets wurde weiterhin mittels Ionenstrahlanalyse (NRA) bestimmt. Messungen bei verschiedenen Stickstoffflüssen demonstrieren direkt die Vergiftung des Targets. Die maximale Stickstoffkonzentration sättigt bei einem Wert, der dem Stickstoffgehalt in einer ca. 3 nm dicken Titannitridschicht entspricht. Bei ausreichend niedrigem Stickstofffluss zeigt die Messung quer über den Targetdurchmesser eine Variation im Stickstoffgehalt. Die Stickstoffkonzentration in der Erosionszone ist deutlich geringer als im Targetzentrum oder am Targetrand. Die Resultate wurden wiederum durch Modellrechnungen bestätigt. Die durchgeführten Computersimulationen basieren auf Sören Bergs Modell des reaktiven Sputterprozesses. Der Algorithmus wurde jedoch auf der Basis der experimentellen Ergebnisse erweitert. Das Modell beinhaltet nun Mechanismen des Reaktivgaseinbaus in das Target, wie Adsorption, Implantation und Recoilimplantation. Des Weiteren wurde die Ionenstromverteilung als Funktion des Targetdurchmessers in das Modell aufgenommen, was eine detailliertere Beschreibung des Prozesses ermöglicht. Die experimentellen Ergebnisse und die Resultate der Computersimulation zeigen, dass bei niedrigen Reaktivgasflüssen metallische und vergiftete Bereiche auf der Targetoberfläche gemeinsam existieren. Das ist im Widerspruch zu älteren Simulationen, in denen von einer homogenen Targetbedeckung durch das Reaktivgas ausgegangen wird. Basierend auf den Ergebnissen wurden die dominierenden Mechanismen des Reaktivgaseinbaus in das Sputtertarget, in Abhängigkeit von der Position und von der Sputtergaszusammensetzung, identifiziert.
|
4 |
An Investigation of Target Poisoning during Reactive Magnetron SputteringGüttler, Dominik 12 March 2009 (has links)
Objective of the present work is a broad investigation of the so called "target poisoning" during magnetron deposition of TiN in an Ar/N2 atmosphere. Investigations include realtime in-situ ion beam analysis of nitrogen incorporation at the Ti sputter target during the deposition process and the analysis of particle uxes towards and from the target by means of energy resolved mass spectrometry. For experiments a planar, circular DC magnetron, equipped with a 2 inch titanium target was installed in an ultrahigh vacuum chamber which was attached to the beam line system of a 5 MV tandem accelerator. A manipulator allows to move the magnetron vertically and thereby the lateral investigation of the target surface. During magnetron operation the inert and reactive gas flow were adjusted using mass flow controllers resulting in an operating pressure of about 0.3 Pa. The argon flow was fixed, whereas the nitrogen flow was varied to realize different states of target poisoning. In a fi?rst step the mass spectrometer was used to verify and measure basic plasma properties e.g. the residual gas composition, the behavior of reactive gas partial pressure, the plasma potential and the dissociation degree of reactive gas molecules. Based on the non-uniform appearance of the magnetron discharge further measurements were performed in order to discuss the role of varying particle fluxes across the target during the poisoning process. Energy and yield of sputtered particles were analyzed laterally resolved, which allows to describe the surface composition of the target. The energy resolving mass spectrometer was placed at substrate position and the target surface was scanned by changing the magnetron position correspondingly. It was found, that the obtained energy distributions (EDF) of sputtered particles are influenced by their origin, showing signi?ficant differences between the center and the erosion zone of the target. These results are interpreted in terms of laterally different states of target poisoning, which results in a variation of the surface binding energy. Consequently the observed energy shift of the EDF indicates the metallic or already poisoned fraction on target surface. Furthermore the EDF's obtained in reactive sputtering mode are broadened. Thus a superposition of two components, which correspond to the metallic and compound fractions of the surface, is assumed. The conclusion of this treatment is an discrete variation of surface binding energy during the transition from metallic to compound target composition. The reactive gas target coverage as derived from the sputtered energy distributions is in reasonable agreement with predictions from model calculations. The target uptake of nitrogen was determined by means of ion beam analysis using the 14N(d, )12C nuclear reaction. Measurements at varying nitrogen gas flow directly demonstrate the poisoning eff?ect. The reactive gas uptake saturates at a maximum nitrogen areal density of about 1.1016 cm-2 which corresponds to the stoichiometric limit of a 3 nm TiN layer. At sufficiently low reactive gas flow a scan across the target surface discloses a pronounced lateral variation of target poisoning, with a lower areal density in the target race track compared to the target center and edge. Again the findings are reproduced by model calculations, which confirm that the balance of reactive gas injection and sputter erosion is shifted towards erosion in the race track. Accomplished computer simulations of the reactive sputtering process are similar to Berg's well known model. Though based on experimental findings the algorithm was extended to an analytical two layer model which includes the adsorption of reactive gas as well as its different kinds of implantation. A distribution of ion current density across the target diameter is introduced, which allows a more detailed characterization of the processes at the surface. Experimental results and computer simulation have shown that at sufficiently low reactive gas flow, metallic and compound fractions may exist together on the target surface, which is in contradiction to previous simulations, where a homogeneous reactive gas coverage is assumed. Based on the results the dominant mechanisms of nitrogen incorporation at different target locations and at varying reactive gas admixture were identified. / Gegenstand der Arbeit ist die Untersuchung der Targetvergiftung beim reaktiven Magnetronsputtern von TiN in Argon-Sticksoff Atmosphäre. Die Untersuchungen beinhalten die Echtzeit in-situ Ionenstrahlanalyse des Stickstoffeinbaus in das Titantarget während des Depositionsprozesses sowie die Analyse der Teilchenflüsse vom – und hin zum Sputtertarget mittels energieaufgelöster Massenspektrometrie. Das Magnetron wurde in einer Vakuumkammer installiert, welche an die Beamline des 5 MV Tandembeschleunigers angeschlossen war. Die Position des Magnetrons konnte mittels eines Manipulator verändert werden, was die laterale Untersuchung der Targetoberfläche ermöglichte. Während des Magnetronbetriebes wurde der Argonfluss in die Kammer konstant gehalten, während der Stickstofffluss variiert wurde um verschiedene Ausprägungen der Targetvergiftung zu erreichen. In einem ersten Schritt wurden die Eigenschaften des Plasmas, z.B. die Zusammensetzung des Sputtergases, das Verhalten des Reaktivgaspartialdruckes, das Plasmapotenzial und der Dissoziationsgrad der Reaktivgasmoleküle im Plasma, mit dem Massenspektrometer ermittelt. Aufgrund der ungleichmäßigen Gasentladung vor dem Magnetrontarget, wurden auch lateral variierende Teilchenflüssen und eine ungleichmäßige Targetvergiftung angenommen. Die Energie und die Ausbeute von gesputterten Teilchen wurde deshalb lateral aufgelöst untersucht. Das Massenspektrometer wurde zu diesem Zweck am Ort des Substrates positioniert und die Targetoberfläche konnte gescannt werden indem die Magnetronposition verändert wurde. Die so aufgenommenen Energieverteilungen der gesputterten Teilchen zeigen eine räumliche Abhängigkeit. Teilchen die aus dem Targetzentrum stammen unterscheiden sich hinsichtlich ihrer Energie signifikant von den Teilchen die in der Target-Erosionszone gesputtert werden. Dieses Resultat zeigt die ungleichmäßige Targetvergiftung, wodurch es zu einer Veränderung der Oberflächenbindungsenergie kommt. Über die Verschiebung in der Energieverteilung lässt sich somit der Zustand der Targetoberfläche beschreiben. Diese experimentellen Ergebnisse zeigen Übereinstimmung mit den Ergebnissen der Modellrechnungen. Der Stickstoffgehalt des Targets wurde weiterhin mittels Ionenstrahlanalyse (NRA) bestimmt. Messungen bei verschiedenen Stickstoffflüssen demonstrieren direkt die Vergiftung des Targets. Die maximale Stickstoffkonzentration sättigt bei einem Wert, der dem Stickstoffgehalt in einer ca. 3 nm dicken Titannitridschicht entspricht. Bei ausreichend niedrigem Stickstofffluss zeigt die Messung quer über den Targetdurchmesser eine Variation im Stickstoffgehalt. Die Stickstoffkonzentration in der Erosionszone ist deutlich geringer als im Targetzentrum oder am Targetrand. Die Resultate wurden wiederum durch Modellrechnungen bestätigt. Die durchgeführten Computersimulationen basieren auf Sören Bergs Modell des reaktiven Sputterprozesses. Der Algorithmus wurde jedoch auf der Basis der experimentellen Ergebnisse erweitert. Das Modell beinhaltet nun Mechanismen des Reaktivgaseinbaus in das Target, wie Adsorption, Implantation und Recoilimplantation. Des Weiteren wurde die Ionenstromverteilung als Funktion des Targetdurchmessers in das Modell aufgenommen, was eine detailliertere Beschreibung des Prozesses ermöglicht. Die experimentellen Ergebnisse und die Resultate der Computersimulation zeigen, dass bei niedrigen Reaktivgasflüssen metallische und vergiftete Bereiche auf der Targetoberfläche gemeinsam existieren. Das ist im Widerspruch zu älteren Simulationen, in denen von einer homogenen Targetbedeckung durch das Reaktivgas ausgegangen wird. Basierend auf den Ergebnissen wurden die dominierenden Mechanismen des Reaktivgaseinbaus in das Sputtertarget, in Abhängigkeit von der Position und von der Sputtergaszusammensetzung, identifiziert.
|
5 |
Self organized formation of Ge nanocrystals in multilayersZschintzsch-Dias, Manuel 05 June 2012 (has links) (PDF)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation.
In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated.
Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure.
A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively.
The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2.
The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range.
The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.
|
6 |
Self organized formation of Ge nanocrystals in multilayersZschintzsch-Dias, Manuel 27 April 2012 (has links)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation.
In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated.
Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure.
A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively.
The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2.
The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range.
The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.:Contents
1 Introduction and motivation 1
2 Basic aspects 6
2.1 Microstructure of sub-stoichiometric oxides (SiOx, GeOx) 6
2.2 Phase transformations 9
2.3 Quantum confinement effect in nanocrystals 12
2.4 Applications of nanostructures in 3rd generation photovoltaics 17
3 Experimental setup 21
3.1 The magnetron deposition chamber 21
3.2 (Reactive) dc sputtering 22
3.3 Annealing processing 26
3.4 X-ray facilities 26
4 Analytical methods 30
4.1 Rutherford backscattering spectrometry (RBS) 30
4.2 Raman scattering 33
4.3 (Grazing incidence) X-ray diffraction (GIXRD) 35
4.4 X-ray reflectivity (XRR) 39
4.5 X-ray absorption near edge structure (XANES) 41
4.6 Transmission electron microscopy (TEM) 42
5 Properties of reactive dc magnetron sputtered Si-Ge-O (multi)layers 44
5.1 Deposition rate and film stoichiometry investigations 44
5.2 Stoichiometry dependent properties of GeOx/SiO2 multilayers 47
5.3 Lateral intercluster distance of the Ge nanocrystals in multilayers 51
6 Confined Ge nanocrystal growth in GeOx/SiO2 multilayers 54
6.1 Phase separation in GeOx single layers and GeOx/SiO2 multilayers 54
6.2 Crystallization in GeOx single layers and GeOx/SiO2 multilayers 58
6.3 Multilayer stability and smallest possible Ge nanocrystal size 60
6.4 Stacked Ge NC films with ultra thin SiO2 separation layers 66
7 Confined Ge nanocrystal growth in Ge:SiOx/SiO2 multilayers 71
7.1 Phase separation in Ge:SiOx/SiO2 multilayers 72
7.2 Crystallisation in Ge:SiOx/SiO2 multilayers 76
8 Summary and conclusions 79
List of Figures 83
List of Tables 85
Bibliography 86
|
7 |
Piezoelektrische Aluminiumnitrid-Dünnschichten für mikroelektromechanische SystemeStöckel, Chris 13 December 2016 (has links) (PDF)
In der vorliegenden Arbeit werden der Entwurf, die Technologie und die Parameteridentifikation von Silizium basierten mikroelektromechanischen Systemen (MEMS) mit piezoelektrischen Dünnschicht-Aluminiumnitrid (AlN) vorgestellt. Auf Basis des AlNs als elektromechanischer Wandler erfolgt die Fertigung eines MEMS Technologiedemonstrators für energiearme Inertialsensoren.
Das AlN wird über einen reaktiven Sputterprozess auf einer Wachstumsschicht abgeschieden. Durch Parametervariation des reaktiven Sputterprozesses und der Wachstumsschicht werden die piezoelektrischen Eigenschaften des AlNs optimiert. Die Entwicklung einer Gesamttechnologie führt zu einer Integration des Dünnschicht-AlNs in Silizium-Mikromechaniken.
Die Röntgenbeugung (XRD) ermöglicht die Kristallstruktur des AlNs zu qualifizieren. Darüber hinaus werden weitere Analysemethoden vorgestellt, die eine hoch genaue und reproduzierbare messtechnische Bestimmung der piezoelektrischen Koeffizienten aus mikromechanischen Messstrukturen ermöglichen. Die Determination der piezoelektrischen Koeffizienten des Dünnschicht-AlNs aus den Messstrukturen erfolgt mittels analytischen und FE Modellen sowie der Laser-Doppler-Vibrometrie (LDV). Der Fokus der Arbeit liegt hierbei auf der Identifikation der longitudinalen und transversalen piezoelektrischen Ladungskoeffizienten des AlNs.
Als Technologiedemonstrator wird ein einachsiger Inertialsensor mit integriertem piezoelektrischen Dünnschicht-AlN vorgestellt. Das MEMS generiert aufgrund des piezoelektrischen Wandlers intrinsisch elektrische Ladungen bei Einwirkung einer mechanischen Energie. Dadurch ist keine elektrische Energiezufuhr für die Messung eines inertialen Ereignisses notwendig. Der vorgestellte Demonstrator wird hinsichtlich seiner Ladungs- und Spannungssensitivität optimiert. Zur theoretischen Beschreibung der Funktionsweise werden analytische, sowie FE und SPICE Modelle genutzt. Eine Charakterisierung des MEMS Bauelements erfolgt hinsichtlich der mechanischen und elektrischen Eigenschaften. / The thesis includes the design, the technology and the parameter identification of silicon-based microelectromechanical systems (MEMS) with piezoelectric thin film of aluminum nitride (AlN). A low-energy inertial sensor as technology demonstrator based on AlN as an electromechanical transducer a MEMS manufacturing process is shown.
The AlN is deposited via a reactive sputtering on a growth layer. By varying parameters of the reactive sputtering and the growth layer of AlN, the piezoelectric properties can be optimized. The development of an overall technology results to an integration of the thin film AlNs in silicon micromechanics.
X-ray diffraction (XRD) allows to qualify the crystal structure of AlN. Further methods are developed that enable a highly accurate and repeatable metrological determination of piezoelectric coefficients measurement structures. The determination of piezoelectric coefficients of the thin film AlN from the measurement structures is resulting from analytical methods and FE models and the laser Doppler vibrometry (LDV). The identification of the longitudinal and transverse piezoelectric charge coefficient of AlN is one main focus of this work.
A uniaxial inertial sensor with an integrated piezoelectric thin film of AlN is presented as technology demonstrator. The piezoelectric transducer of the MEMS is generating electric charges intrinsically as reaction of mechanical stress. Thus, no electric power supply for the measurement of an inertial event is necessary. The presented demonstrator has been optimized with respect to its charge and voltage sensitivity. For a theoretical description analytical and FE and SPICE models are used. A characterization of the MEMS device is carried out with regard to the mechanical and electrical properties.
|
8 |
Piezoelektrische Aluminiumnitrid-Dünnschichten für mikroelektromechanische SystemeStöckel, Chris 17 October 2016 (has links)
In der vorliegenden Arbeit werden der Entwurf, die Technologie und die Parameteridentifikation von Silizium basierten mikroelektromechanischen Systemen (MEMS) mit piezoelektrischen Dünnschicht-Aluminiumnitrid (AlN) vorgestellt. Auf Basis des AlNs als elektromechanischer Wandler erfolgt die Fertigung eines MEMS Technologiedemonstrators für energiearme Inertialsensoren.
Das AlN wird über einen reaktiven Sputterprozess auf einer Wachstumsschicht abgeschieden. Durch Parametervariation des reaktiven Sputterprozesses und der Wachstumsschicht werden die piezoelektrischen Eigenschaften des AlNs optimiert. Die Entwicklung einer Gesamttechnologie führt zu einer Integration des Dünnschicht-AlNs in Silizium-Mikromechaniken.
Die Röntgenbeugung (XRD) ermöglicht die Kristallstruktur des AlNs zu qualifizieren. Darüber hinaus werden weitere Analysemethoden vorgestellt, die eine hoch genaue und reproduzierbare messtechnische Bestimmung der piezoelektrischen Koeffizienten aus mikromechanischen Messstrukturen ermöglichen. Die Determination der piezoelektrischen Koeffizienten des Dünnschicht-AlNs aus den Messstrukturen erfolgt mittels analytischen und FE Modellen sowie der Laser-Doppler-Vibrometrie (LDV). Der Fokus der Arbeit liegt hierbei auf der Identifikation der longitudinalen und transversalen piezoelektrischen Ladungskoeffizienten des AlNs.
Als Technologiedemonstrator wird ein einachsiger Inertialsensor mit integriertem piezoelektrischen Dünnschicht-AlN vorgestellt. Das MEMS generiert aufgrund des piezoelektrischen Wandlers intrinsisch elektrische Ladungen bei Einwirkung einer mechanischen Energie. Dadurch ist keine elektrische Energiezufuhr für die Messung eines inertialen Ereignisses notwendig. Der vorgestellte Demonstrator wird hinsichtlich seiner Ladungs- und Spannungssensitivität optimiert. Zur theoretischen Beschreibung der Funktionsweise werden analytische, sowie FE und SPICE Modelle genutzt. Eine Charakterisierung des MEMS Bauelements erfolgt hinsichtlich der mechanischen und elektrischen Eigenschaften. / The thesis includes the design, the technology and the parameter identification of silicon-based microelectromechanical systems (MEMS) with piezoelectric thin film of aluminum nitride (AlN). A low-energy inertial sensor as technology demonstrator based on AlN as an electromechanical transducer a MEMS manufacturing process is shown.
The AlN is deposited via a reactive sputtering on a growth layer. By varying parameters of the reactive sputtering and the growth layer of AlN, the piezoelectric properties can be optimized. The development of an overall technology results to an integration of the thin film AlNs in silicon micromechanics.
X-ray diffraction (XRD) allows to qualify the crystal structure of AlN. Further methods are developed that enable a highly accurate and repeatable metrological determination of piezoelectric coefficients measurement structures. The determination of piezoelectric coefficients of the thin film AlN from the measurement structures is resulting from analytical methods and FE models and the laser Doppler vibrometry (LDV). The identification of the longitudinal and transverse piezoelectric charge coefficient of AlN is one main focus of this work.
A uniaxial inertial sensor with an integrated piezoelectric thin film of AlN is presented as technology demonstrator. The piezoelectric transducer of the MEMS is generating electric charges intrinsically as reaction of mechanical stress. Thus, no electric power supply for the measurement of an inertial event is necessary. The presented demonstrator has been optimized with respect to its charge and voltage sensitivity. For a theoretical description analytical and FE and SPICE models are used. A characterization of the MEMS device is carried out with regard to the mechanical and electrical properties.
|
Page generated in 0.0518 seconds