• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries

Dörfler, Susanne, Hagen, Markus, Althues, Holger, Tübke, Jens, Kaskel, Stefan, Hoffmann, Michael J. January 2012 (has links)
Binder free vertical aligned (VA) CNT/sulfur composite electrodes with high sulfur loadings up to 70 wt% were synthesized delivering discharge capacities higher than 800 mAh g−1 of the total composite electrode mass. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
12

Studies On Electrode Materials For Lithium-Ion Batteries

Palale, Suresh 02 1900 (has links)
In the early 1970s, research carried out on rechargeable lithium batteries at the Exxon Laboratories in the US established that lithium ions can be intercalated electrochemically into certain layered transition-metal sulphides, the most promising being titanium disulphide. Stemming from this discovery for titanium disulphide, there has been increased interest on lithium-ion intercalation compounds for application in rechargeable batteries. The first rechargeable lithium cell was commercialized in late 1980s by Moli Energy Corporation in Canada. The cell comprised a spirally wound lithium foil as the anode, a separator and MoS2 as the cathode. The cell had a nominal voltage of 1.8 V and an attractive value of specific energy, which was 2 to 3 times greater than either lead-acid or nickel-cadmium cells. However, the battery was withdrawn from the market after safety problems were experienced. This paved way for the discovery of lithium-ion battery. The origin of lithium-ion battery lies in the discovery that Li+-ions can be reversibly intercalated within or deintercalated from the van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. Thus, lithium metal is replaced by carbon as the anode material for rechargeable lithium-ion batteries, and the problems associated with metallic lithium mitigated. Complimentary investigations on intercalation compounds based on transition metals resulted in establishing LiCoO2 and LiNiO2 as promising cathode materials. By employing aforesaid intercalation materials, namely carbon and LiCoO2 respectively, as negative and positive electrodes in a non-aqueous lithium-salt electrolyte, a Li-ion cell with a voltage value of about 3.5 V resulted. These findings led to a novel rechargeable battery technology. Lithium-ion batteries were first introduced commercially in 1991 by the Sony Corporation in Japan. Other Japanese manufacturers soon entered the market, followed closely by American and European companies. The subsequent growth in sales of the batteries was truly phenomenal. Beginning from 1991, the lithium-ion battery market has grown from an R&D interest to sales of over 400 million units in 1999. The global market value for lithium-ion batteries at original equipment manufacturer level was estimated to be $1.86 billion in 2000. By 2006, the market is expected to grow to over 1.2 billion units with value of over $4 billion, while the average unit price is expected to fall. Initially, realizable specific energy of commercial Li-ion battery was only about 120 Wh kg-1. However, with continuing improvements in various cell components, present day Li-ion batteries can provide a specific energy density of about 200 Wh kg-1. With the ‘holy grail’ far to be realized, the current R&D efforts are focussed on furthering the specific energy of lithium-ion batteries in conjunction with safety, environmental compatibility, and cost effectiveness. In the Li-ion cell, all of its electrochemical constituents, namely anode, cathode and electrolyte are central to its performance. This thesis describes some novel studies on cathode and anode materials for lithium-ion Batteries.
13

Småskalig lagring av solcellsel : En överblick över möjligheterna att lagra solcellsel i uppladdningsbara batterier och vattenmagasin.

Steen Englund, Jessika January 2012 (has links)
I det här examensarbetet dimensioneras en solcellsanläggning med batteribank till fyra kolonistugor som kommer att vara bebodda under sommarhalvåret på Wij Trädgårdar i Ockelbo. Den förväntade elanvändningen beräknas för två olika brukarbeteenden. Ett brukarbeteende där hushållsapparater med höga effekter (exempelvis mikrovågsugn) förväntas ha kortare drifttider vilket resulterar i lägre krav på installerad solcellseffekt samt en mindre batteribank.För den kemiska energilagringen i en batteribank undersöks flera olika typer av uppladdningsbara batterier. AGM blyackumulatorn är det batteri som anses vara lämpligt för kemisk energilagring i solcellssystemet och som har använts vid dimensioneringen av batteribanken. Vidare undersöks möjligheterna att lagra elektricitet småskaligt genom pumpat vatten till ett vattenmagasin, som ett komplement till energilagringen i batteribanken. Genom ett vattenlagringssystem kan överskottselen från solcellerna användas för att pumpa upp vatten till ett vattenmagasin på en högre höjd och därmed lagras genom lägesenergi. När det finns ett behov av elektricitet och den lagrade energin i batteribanken inte är tillräcklig kan vattnet flöda genom en vattenturbin som genererar el till batteribanken och lasterna. Ett vattenlagringssystem kan skydda batteribanken från djupare urladdningar, vilket kan öka batteriernas livslängd i form av antalet laddningscykler, samt ta tillvara överskottselen från solcellerna i större utsträckning. Batteribanken står för en stor del av inköpskostnaden och det finns både miljömässiga och ekonomiskt starka incitament att hitta sätt att förlänga batteribankens livslängd. / In this bachelor thesis is the size of a battery bank and the demand of photovoltaic power to supply electricity to four off-grid cottages calculated, which are occupied during the summer months at Wij Trädgårdar in Ockelbo. The expected electricity demand of the households is calculated for two different user patterns. In one of the user patterns the household appliances with a high power demand (for example microwave) are expected to have a shorter daily usage time, which results in a considerable lower purchase cost as a result from lower power demand of installed photovoltaic and a smaller battery bank. For the battery bank have different rechargeable batteries been investigated. The AGM Lead-Acid battery is found to be the most suitable rechargeable battery for chemical energy storage in this photovoltaic system. Furthermore the possibilities of pumping water to a water reservoir and store as potential energy as a complement to the energy storage in the battery bank have been investigated and discussed. Through a small-scale pumped hydro storage the surplus electricity from the photovoltaic can be used to pump up water to a reservoir at a higher altitude and be stored as potential energy. When there is a demand of electricity and the energy stored in the battery bank is not enough the water can be used in a small-scale water turbine, which generates electricity t the battery bank and the loads. A pumped hydro storage can protect the battery bank from deeper discharge, which otherwise can reduce the lifetime of the batteries, and extend the number of charge and discharge cycles the batteries can manage. The battery bank represents a large part of the purchase costs and there are strong environmental and economical incentives to prolong the lifetime of the battery bank.
14

Exploring computational materials for energy : from first principles to mesoscopic methods

Pereira, Aline Olimpio January 2015 (has links)
Orientador: Prof. Dr. Caetano Rodrigues Miranda / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2015. / In this thesis, we explore computational materials science for energy technologies. More specifically, a multiscale computational methodology ranging from atomistic to mesoscopic methods was used to investigate the potential use of nanostructured materials for applications in: (i) hydrogen and fuel cells, (ii) rechargeable batteries, and (iii) oil recovery techniques. First principles simulations based on the Density Functional Theory were successfully employed to characterize and propose nanomaterials for hydrogen production and storage, fuel cells, and battery technologies. It was possible to understand fundamental properties that are essential to further development in these technologies, e. g. structural, electronic, catalytic and kinetic properties. The structural, energetic and electronic properties of layered metallic nanofilms of Pd, Pt and Au as catalysts for hydrogen and fuel cell applications were investigated. We have shown that Pd and Pt nanofilms are interesting systems, with improved catalytic activity for hydrogen, oxygen and ethanol. The evaluation of the electronic structure of such nanofilms shows the existence of a linear correlation between the d-band center and adsorption energies. The determination of such trends represents a significative contribution to the design of new and improved catalysts, since it is a valuable tool to predict the catalytic activity of nanofilms. Significant breakthroughs were also obtained when applying first principles calculations to battery technologies. The adsorption and di.usion properties of Li and Mg were investigated in transition metal dichalcogenide inorganic nanotubes. A high ion mobility is observed at the surface of MoS2 and WS2 nanotubes, which support the potential application of the use of such systems as additive electrode materials for high-rate battery applications. By using classical molecular dynamics calculations, the structural and di.usion properties of organic electrolytes could be determined and may help in the development of rechargeable batteries. Our simulations have demonstrated that mixture of ethylene carbonate and ethylmethyl carbonate present better di.usion properties as electrolyte in lithium ion batteries, since it is possible to obtain a good degree of dissociation associated to a good ionic conductivity. xvi Abstract In order to extent the nanoscale e.ects to the microscale, we also successfully propose a hierarchical computational protocol that combines molecular dynamics and mesoscopic lattice Boltzmann calculations. The e.ects of dispersed functionalized SiO2 nanoparticles in brine to the oil recovery process in a covered clay pore structure is explored. Molecular dynamics simulations have shown that the addition of functionalized nanoparticles to the brine solution reduces the interfacial tension between oil and brine. Followed by an increase of the contact angle. By mapping these results into lattice Boltzmann parameters, the oil displacement process in hydrophilic pore models was investigated. Our simulations indicate that the observed changes in the interfacial tension and wettability by the inclusion of SiO2 nanoparticles indeed improve the oil recovery process in a microscale, and seems to be a good alternative as injection fluids for enhanced oil recovery techniques. Thus, our proposed hierarchical computational protocol that combines molecular dynamics and lattice Boltzmann method simulations can be a versatile tool to investigate the e.ects of the interfacial tension and wetting properties on fluid behavior at both nano and micro scales. Although it is clear that the search and development of new advanced materials continues to be a key factor in energy technologies, the present thesis represent a significant contribution to understand the fundamental phenomena underlying hydrogen production and storage, fuel cells, batteries, and fossil fuel applications.
15

Generalized Homogenization Theory and its Application to Porous Rechargeable Lithium-ion Batteries

Juan Campos (9193691) 12 October 2021 (has links)
<p>A thermodynamically consistent coarsed-grained phase field model was developed to find the conditions under which a heterogeneous porous electrode can be treated as homogeneous in the description of Lithium-ions in rechargeable batteries. Four regimes of behavior under which the transport phenomena can be homogenized to describe porous LIBs were identied: regime (a), where the model is inaccurate, for physically accessible particle packings of aspect ratios smaller than c/a = 0.5 and electrode porosities between 0.34 to 0.45; regime (b), where the model is valid, for particles of aspect ratios greater than c/a = 0.7 and electrode porosities greater than 0.35; regime (c), where the model is valid, but the microstructures are physically inaccessible, and correspond to particles with aspect ratios greater than c/a = 0.7 and electrode porosities smaller than 0.34; and regime (d), where the model is invalid and the porous microstructures are physically inaccessible, and correspond to particles with aspect ratios smaller than c/a = 1 and electrode porosities smaller than 0.34.</p> <p>The developed formulation was applied to the graphite | LixNi1/3Mn1/3Co1/3O2 system to analyze the effect of microstructure and coarsed-grained long-range chemomechanical effects on the electrochemical behavior. Specically, quantiable lithium distribution populations in the cathode, as a result of long range interactions of the diffuse interface, charge effects and mechanical stresses were identified: i) diffusion limited population due to negligible composition gradients, ii) stress-induced population as a result of chemically induced stresses, and iii) lithiation-induced population, as a consequence of the electrochemical potential gradients.</p>
16

Stabilita aprotických elektrolytů v lithno-iontových akumulátorech / Stability of aprotic electrolytes in lithium-ion batteries

Krištofík, František January 2014 (has links)
The Master thesis describe basic electrochemical processes in lithium-ion batteries and characteristic organic polar solvents for these articles. It focuses primarily on the aprotic liquid electrolytes for lithium-ion batteries and the subsequent use of gas chromatography to analyze the collected gas sample from the test article. For this experiment is, in this Master thesis, designed and described experimental arrangement in the form of a glass cell, which allows collection from the space above the working electrode. Finally, the work evaluates the effect of electrode potential on the stability of electrolytes in strongly positive potentials.
17

Structural, Electronic and Mechanical Properties of Advanced Functional Materials

Ramzan, Muhammad January 2013 (has links)
The search for alternate and renewable energy resources as well as the efficient use of energy and development of such systems that can help to save the energy consumption is needed because of exponential growth in world population, limited conventional fossil fuel resources, and to meet the increasing demand of clean and environment friendly substitutes. Hydrogen being the simplest, most abundant and clean energy carrier has the potential to fulfill some of these requirements provided the development of efficient, safe and durable systems for its production, storage and usage. Chemical hydrides, complex hydrides and nanomaterials, where the hydrogen is either chemically bonded to the metal ions or physiosorbed, are the possible means to overcome the difficulties associated with the storage and usage of hydrogen at favorable conditions. We have studied the structural and electronic properties of some of the chemical hydrides, complex hydrides and functionalized nanostructures to understand the kinetics and thermodynamics of these materials. Another active field relating to energy storage is rechargeable batteries. We have studied the detailed crystal and electronic structures of Li and Mg based cathode materials and calculated the average intercalation voltage of the corresponding batteries. We found that transition metal doped MgH2 nanocluster is a material to use efficiently not only in batteries but also in fuel-cell technologies. MAX phases can be used to develop the systems to save the energy consumption. We have chosen one compound from each of all known types of MAX phases and analyzed the structural, electronic, and mechanical properties using the hybrid functional. We suggest that the proper treatment of correlation effects is important for the correct description of Cr2AlC and Cr2GeC by the good choice of Hubbard 'U' in DFT+U method. Hydrogen is fascinating to physicists due to predicted possibility of metallization and high temperature superconductivity. On the basis of our ab initio molecular dynamics studies, we propose that the recent claim of conductive hydrogen by experiments might be explained by the diffusion of hydrogen at relevant pressure and temperature. In this thesis we also present the studies of phase change memory materials, oxides and amorphization of oxide materials, spintronics and sulfide materials.

Page generated in 0.3667 seconds