• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 459
  • 88
  • 84
  • 56
  • 16
  • 13
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • Tagged with
  • 924
  • 205
  • 173
  • 165
  • 131
  • 122
  • 121
  • 113
  • 94
  • 91
  • 81
  • 60
  • 57
  • 56
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Obtenção de altos níveis séricos de endostatina murina em camundongos pela utilização de células de ovário de hamster chinês recombinantes secretando endostatina transplantadas em dispositivos de imunoisolamento / Obtaining high serum levels of murine endostatin in mice using recombinant chinese hamster ovary cells secreting endostatin transplanted in imunoisolation devices

VALLEJO, NATALIA M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:54:30Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:07:46Z (GMT). No. of bitstreams: 0 / Endostatina, um fragmento do colágeno XVIII de 20 kDa, é um potente inibidor de angiogênese e crescimento tumoral. Foi previamente demonstrado que a administração contínua de endostatina em modelos animais melhorou a eficácia e potência da terapia antitumoral, comparada com a administração subcutânea diária por injeções de endostatina. A liberação contínua da proteína antiangiogênica endostatina para a circulação sistêmica poderia ser um tratamento antiangiogênico ideal. O sistema Theracyte é um sistema de membranas de politetrafluoretileno semi-permeáveis para macro-encapsulamento e implante de células geneticamente modificadas para liberação de proteínas terapêuticas in vivo e que não requer a imunossupressão do hospedeiro. Com a finalidade de demonstrar a utilidade deste sistema, células CHO expressando (his)6-met-endostatina foram injetadas em dispositivos de imunoisolamento Theracyte, que foram imediatamente implantados em camundongos imunodeficientes (SCID). Em outro modelo de implante de dispositivos de imunoisolamento, os dispositivos Theracyte foram implantados em animais e depois do tempo de cicatrização (17 dias), as células expressando endostatina foram injetadas dentro dos dispositivos. Níveis altos e constantes de endostatina de até 3,7 g/ml foram detectados no plasma durante os dois meses de duração do estudo em ambos os modelos de implante dos dispositivos de imunoisolamento. Níveis mais altos de endostatina (até 6,7 g/ml) foram detectados no plasma de animais implantados com o mesmo número de células livres. Análise histológica de cortes corados por hematoxilina/eosina dos dispositivos retirados dos animais mostraram que haviam células aparentemente viáveis dentro dos dispositivos. A análise imuno-histoquímica utilizando anticorpo anti-endostatina mostrou a existência de reação nas células dentro do dispositivo e também do lado de fora, demonstrando que a endostatina, secretada pelas células recombinantes confinadas, extravasou da membrana, atingindo os tecidos ao redor. / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
262

Type XIII collagen:organization and chromosomal localization of the mouse gene, distance between human COL13A1 and prolyl 4-hydroxylase α-subunit genes, and generation of mice expressing an N-terminally altered type XIII collagen

Kvist, A.-P. (Ari-Pekka) 27 September 1999 (has links)
Abstract The complete exon-intron organization of the gene coding for the mouse α1(XIII) collagen chain, Col13a1, was characterized from genomic clones and multiple transcription initiation points were determined. Detailed comparison of the human and mouse genes showed that the exon-intron structures are completely conserved between the species, and both genes have their 5' untranslated region preceded by a highly conserved putative promoter region. The chromosomal location of the mouse gene was determined to be at chromosome 10, band B4, between markers D10Mit5 – (2.3 ± 1.6 cM) – Col13a1 – (3.4 ± 1.9 cM) – D10Mit15. The location of the genes for both the catalytically important α-subunit of prolyl 4-hydroxylase (P4HA) and human type XIII collagen (COL13A1) were previously mapped to 10q21.3-23.1. Prolyl-4-hydroxylase catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of peptide-bound proline and plays a crucial role in the synthesis of these proteins. The order and transcriptional orientation of the COL13A1 and P4HA was determined. These two genes were found to lie at tail to tail orientation on chromosome 10 and the distance between these genes was determined to be about 550 kbp. To study the function of type XIII collagen we used gene targeting in ES cells to generate a mouse line that carries a mutated type XIII collagen gene. Instead of normal protein, mutant mice express type XIII collagen with an altered amino-terminus in which the cytosolic and the transmembrane domains have been replaced with an unrelated sequence. The homozygous mice are fertile and viable but they show alterations in skeletal muscles, mainly wavy sarcolemma and increased variation in muscle fiber diameter. Ultrastructural studies revealed additional abnormalities such as streaming of z-disks, accumulation and enlargement of mitochondria, and disorganized myofilaments. The basement membranes of the muscle cells showed areas of detachment from the plasma membrane and the fibrillar matrix of the cells was less compact than in control animals. Fibroblasts cultured from mutant mice had normal levels of type XIII collagen but exhibited decreased adhesion to substratum which might be explained by a reduced anchoring strength of the altered protein.
263

The effects of band structure on recombination processes in narrow gap materials and laser diodes

Kotitschke, Ralf Thomas January 1999 (has links)
The work described in this thesis investigates the effects of bandstructure modifications, brought about by Landau confinement, hydrostatic pressure and uniaxial stress, on recombination processes in narrow-gap materials and laser diodes. The effects of Landau confinement on the characteristics of InSb-based emission devices operating at a wavelength of ~5mum at 77K were studied. The change in performance due to the magnetic field applied along both the cavity and the growth direction and thereby simulating quasi-quantum wire and quasi-quantum dot structures clearly demonstrated the benefits, such as reduced threshold and temperature sensitivity, gained by the reduced dimensionality. On the other hand, suppression of LO-phonon emission due to the discrete nature of the density of states was observed, for the first time, in an interband laser device. Interband recombination dynamics were studied in In1-xGaxSb and PbSe over a range of excited carrier densities and temperatures down to 30K. Detailed analysis of the results found that the Auger-1 mechanism is reduced in In1-xGaxSb as a function of Ga-fraction due to the increased bandgap energy, in good agreement with theoretical predictions. In PbSe, the Auger-1 rate was observed to dominate at low excited carrier concentrations in spite of near-mirror bands, and was found to be approximately constant between 300K and 70K and was seen to be quenched in the low temperature regime. Stimulated emission was seen to be the most efficient recombination mechanism at high excited carrier densities at low temperatures. The Auger coefficient in PbSe was found to be one to two orders of magnitude lower than for materials with a Kane band structure (Hg1-xCdxTe) with comparable bandgap. An experimental technique was developed which enables measurements at high hydrostatic pressures and high magnetic fields at low temperatures. Hydrostatic pressures were applied to a 1.5mum laser diode at different temperatures revealing the effects of pressure on the band structure and hence the laser characteristics. A visible laser diode was measured under the simultaneous application of hydrostatic pressure and uniaxial stress. The change in performance was satisfactorily explained in terms of leakage of carriers into the X-minimum in the cladding region, the process that has been suspected of being one of the major loss mechanisms in visible laser diodes. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that the copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author or the University (as may be appropriate).
264

Rôle de l'activité méthyltransférase de la protéine PRDM9 dans la recombinaison méiotique chez la souris / Role of PRDM9 methyltransferase activity in mouse meiotic recombination

Diagouraga, Boubou 15 December 2015 (has links)
Chez les organismes à reproduction sexuée, les gamètes (cellules sexuelles) sont produits par un processus comprenant deux divisions successives appelé méiose. Durant la première division, la recombinaison méiotique permet un contact physique et un échange de matériel génétique entre les chromosomes homologues. Elle résulte de la réparation, par recombinaison homologue, de cassures double-brin de l’ADN générées par la protéine SPO11 au début de la prophase de la première division. Chez les mammifères, les évènements de recombinaison se situent dans des régions de 1-2 kb appelées points chauds de recombinaison. La protéine PRDM9, qui contient un domaine PR/SET et des doigts de zinc, détermine la position des points chauds en ciblant des séquences spécifiques d’ADN par ses doigts de zinc. Son domaine PR/SET porte une activité lysine méthyltransférase, corrélée avec un enrichissement de H3K4me3 au niveau des points chauds, dans les spermatocytes.Les objectifs de mon travail étaient de caractériser l’activité catalytique de PRDM9 et d’étudier son rôle dans l’initiation de la recombinaison chez la souris. La structure cristallisée du domaine PR/SET de PRDM9 en complexe avec un peptide de l’histone H3 nous a permis de montrer que ce domaine adopte une structure similaire aux domaines SET canoniques portés par d’autres méthyltransférases, et d’identifier des résidus clés pour son activité. Nous montrons que le domaine PR/SET de PRDM9 méthyle in vitro non seulement H3K4, mais aussi H3K9 et H3K36. Nous confirmons in vivo la triméthylation de H3K36 dépendante de PRDM9 dans les spermatocytes. Utilisant deux allèles différents de PRDM9, Prdm9b et Prdm9wm7, qui activent des points chauds différents grâce à leur spécificité de séquence, nous avons généré des lignées de souris exprimant des allèles mutés du domaine PR/SET dont l’activité catalytique est abolie, Prdm9wm7G278A ou Prdm9wm7Y357F. La protéine mutante PRDM9wm7Y357F se fixe à ses cibles, mais n’y permet in vivo ni la triméthylation de H3K4, ni celle de H3K36. Enfin, nous montrons que l’activité catalytique de PRDM9 est requise pour promouvoir la recombinaison aux points chauds. Chez les souris exprimant uniquement un allèle Prdm9 muté, les spermatocytes présentent des défauts d’appariement des chromosomes homologues et de réparation des cassures double-brin de l’ADN, ainsi qu’un arrêt de la progression en méiose en milieu de prophase I, phénotype similaire à celui de la souris KO pour Prdm9 (Prdm9-/-). L’ensemble de nos résultats met en évidence le rôle primordial de l’activité méthyltransférase de PRDM9 pour la détermination des sites de recombinaison méiotique et plus généralement pour la progression de la méiose et finalement la formation de gamètes chez la souris. / In sexually reproducing organisms, gametes are produced by a process comprising two successive division, called meiosis. During the first division, meiotic recombination enables a physical contact and an exchange of genetic material between homologous chromosomes. Meiotic recombination results from the repair, by homologous recombination, of programmed DNA double-strand breaks (DSBs) catalyzed by the SPO11 protein at the beginning of prophase I. In mammals, recombination events are localized in 1 to 2 kb-long regions called recombination hotspots. PRDM9, a PR/SET domain and zinc finger-containing protein, determines hotspot localization by targeting specific DNA sequences through its zinc finger array. Notably, PRDM9 PR/SET-domain possesses an H3K4 methyltransferase activity, while PRDM9-dependent H3K4me3 enrichment is found at hotspots in spermatocytes.We aimed at characterizing PRDM9 methyltransferase activity and studying its role in meiotic recombination initiation in mouse. The crystal structure of PRDM9 PR/SET domain, which we generated in complex with a histone H3 peptide, shows that this domain adopts a similar topology to that of classical SET domains and allowed us to identify key residues for its catalytic activity. PRDM9 PR/SET domain catalyzes not only mono-, di- and trimethylation of H3K4, but also of H3K9 and H3K36. We confirmed PRDM9 dependent H3K36 trimethylation in spermatocytes. Taking advantage of the distinct DNA binding specificity of two Prdm9 alleles, Prdm9b and Prdm9wm7, each activating its own set of hotspots, we generated transgenic mouse lines expressing either Prdm9wm7G278A or Prdm9wm7Y357F mutant allele together with the endogenous wild-type Prdm9b allele. Both G278A and Y357F mutations abolish PRDM9 catalytic activity. We show that PRDM9wm7Y357F binds normally to its genomic targets, but is not able to promote H3K4 nor H3K36 trimethylation at these sites. In addition, PRDM9wm7Y357F does not promote recombination at one Prdm9wm7-dependent hotspot, showing that PRDM9 catalytic activity is required for promoting recombination at hotspots. In mice expressing only the mutant allele (Prdm9wm7G278A or Prdm9wm7Y357F), spermatocytes display defects in homologous chromosome synapsis and DSBs repair, as well as an arrest of meiosis at the mid-prophase I. This phenotype is similar to that of Prdm9 KO mice. Overall, our results demonstrate the role of PRDM9 methyltransferase activity in determining recombination hotspots and more generally for meiotic progression and gametes formation.
265

Initiation de la recombinaison méiotique chez la souris : recherche de partenaires de la protéine PRDM9 / Initiation of meiotic recombination in mice : search for PRDM9 partners

Imai, Yukiko 11 December 2015 (has links)
La recombinaison homologue au cours de la méiose est un événement essentiel pour la ségrégation fidèle des chromosomes homologues, et contribue à la production de la diversité génétique. La recombinaison méiotique est initiée par l'induction de cassures double brin d'ADN (CDB), catalysée par SPO11, à des régions spécifiques du génome appelés points chauds. Récemment, il a été montré que PRDM9 est un déterminant majeur des points chauds de recombinaison chez la souris et l'homme. PRDM9 contient un domaine PR/SET avec une activité d'histone méthyltransférase, un domaine de liaison à l'ADN constitué d'une série de doigts de zinc en tandem, et des domaines prédit pour être impliqué dans des interactions protéine-protéine. Notre modèle de travail récent place PRDM9 comme un élément clé pour l'initiation de la recombinaison méiotique: PRDM9 se lie à l'ADN via le domaine à doigts de zinc, et modifie localement la structure de la chromatine. Grâce à un processus encore inconnu, SPO11 est recruté à proximité des sites de liaison de PRDM9, où il catalyse la formation de CDB. Le but de ma thèse était de répondre à la question : comment PRDM9 recrute-t-elle la machinerie CDB aux points chauds ? Pour mieux comprendre ce mécanisme, je me suis attaché à la caractérisation des protéines interagissant avec PRDM9. Les protéines interagissant potentiellement avec PRDM9 ont été identifiées, par criblage double hybrides dans la levure avec des banques d'ADNc issues de testicules, et par purification par affinité-spectrométrie de masse des complexes PRDM9. La cartographie par double hybride avec des formes tronquées de PRDM9 a révélé que le domaine KRAB atypique de PRDM9 joue un rôle clé dans les interactions protéine-protéine. Les protéines identifiées comprennent CXXC1, un composant évolutivement conservé du complexe SET1-COMPASS, et HELLS qui est indispensable à la progression de la méiose I chez la souris. J’ai montré que ces deux protéines sont exprimées au cours de la spermatogenèse chez la souris. Puisque Spp1, l'orthologue chez S. cerevisiae de CXXC1, est connu pour servir de médiateur de recrutement de la machinerie de formation des CDB aux sites de CBD, l'interaction entre PRDM9 et CXXC1 pourrait refléter la conservation de la fonction méiotique de Spp1 chez la souris. / Meiotic homologous recombination is an essential event for faithful segregation of homologous chromosomes, and contributes to production of genetic diversity. Meiotic recombination is initiated by the induction of programmed DNA double strand breaks (DSBs), which are catalyzed by SPO11, at specific regions of the genome called hotspots. Recently, PRDM9 was reported as a major determinant of recombination hotspots in mouse and human. PRDM9 contains a PR/SET domain with histone methyltransferase activity, a zinc-finger array, and putative domains for protein-protein interactions. Our recent working model involves PRDM9 as a key component for the initiation of meiotic recombination: PRDM9 binds DNA via the zinc-finger array, and modifies chromatin structure locally. Through an unknown process, SPO11 is recruited and catalyzes DSB formation near PRDM9-bound sites. The aim of my thesis was to address the question: how does PRDM9 recruit DSB machinery to hotspots. To gain insight into this mechanism, I focused on characterization of PRDM9-interacting proteins. Potential interactors of PRDM9 were identified by yeast two hybrid (Y2H) screens with testis cDNA libraries and by affinity purification-mass spectrometry of PRDM9 complexes. Further Y2H assays with truncated derivatives of PRDM9 revealed that the atypical KRAB domain of PRDM9 plays a key role in protein-protein interactions. The identified proteins include CXXC1, a component of the evolutionarily conserved SET1-COMPASS complex, and HELLS, which is indispensable for progression of meiotic prophase I in mouse. Both proteins were found to be expressed during mouse spermatogenesis. Since Spp1, the S.cerevisiae orthologue of CXXC1, is known to mediate tethering of DSB sites to DSB machinery, the interaction between PRDM9 and CXXC1 might imply potential conservation of the Spp1 function in mouse meiosis.
266

Photoluminescent properties of novel colloidal quantum dots

Espinobarro Velazquez, Daniel January 2015 (has links)
In this thesis type II colloidal quantum dots (CQDs) with zinc blende crystal structure were investigated. The optical properties were characterized by steady state absorption and photoluminescence (PL) spectroscopy for all the samples, and the PL quantum yield was measured for selected samples by using both absolute and relative methods. Exciton dynamics and interactions were investigated by time-resolved PL (TRPL).The exciton-exciton interaction energy for CdSe, CdSe/CdTe and CdSe/CdTe/CdS CQDs was investigated using TRPL spectroscopy, an established method. The TRPL results were compared with previous results from ultrafast transient absorption (TA) measurements and theoretical predictions. The discrepancies between the TRPL and TA results and the theoretical calculations suggest that TRPL data has been misinterpreted in the literature. The single exciton recombination dynamics for CdSe, CdSe/CdTe and CdSe/CdTe/CdS CQDs were investigated. The effects of non-radiative recombination were identified from the PL transients by using a theoretically-calculated radiative lifetime as a fitting parameter. The combined rate of the non-radiative processes thus found was consistent with the localisation of holes into shallow traps by an Auger-mediated process. A rate equation analysis also showed how shallow trapping can give rise to the tri-exponential PL dynamics observed experimentally. Chloride passivation of CdTe CQDs resulted in a near-complete suppression of surface traps, producing a significant enhancement of the optical properties. PL quantum yield (PLQY) and PL lifetime in particular benefit from the chloride treatment. The radiative recombination rate that now could be extracted from PL transients for chloride treated samples was used to calculate the non-radiative recombination rate for the untreated samples. In addition, a study of the effects of air exposure on the PL, observed for both treated and untreated samples was undertaken and revealed the importance of the influence of the dielectric environment surrounding the traps states on recombination dynamics.
267

Meiotic defects in infertile men

Ferguson, Kyle Akira 11 1900 (has links)
While the introduction of intracytoplasmic sperm injection (ICSI) has revolutionized the treatment of male infertility, concerns have been raised regarding the risk of chromosomal abnormalities in pregnancies derived from ICSI. Studies on sperm from infertile men have suggested that this population may produce higher rates of aneuploid sperm. Thus, we hypothesized that defects in early meiotic events may contribute to both male infertility and the production of aneuploid sperm. We used immunofluorescent techniques to observe the synapsis and recombination of chromosomes during meiosis, and fluorescent in-situ hybridization (FISH) to assess sperm aneuploidy. We analyzed testicular tissue from thirty-one men (10 fertile and 21 infertile men). We observed that ~36% (5/14) of men with impaired spermatogenesis displayed reduced genome-wide recombination. When all men were pooled, we observed an inverse correlation between the frequency of sex chromosome recombination and XY disomy in the sperm. We combined immunofluorescent and FISH techniques to study recombination patterns on chromosomes 13, 18 and 21 in fifteen men (5 fertile and 10 infertile men). Four of the infertile men displayed altered recombination distributions on at least one of the chromosome arms studied. Finally, we examined early meiotic events in two biopsies from an azoospermic t(8;13) carrier. While global recombination rates were not altered, recombination frequencies were reduced specifically on the rearranged chromosomes. Asynapsed quadrivalents were observed in 90% and 87% of pachytene nuclei from the first and second biopsies, respectively, and were frequently associated with the sex chromosomes. BRCA1 and γH2AX, two proteins implicated in meiotic sex chromosome inactivation, localized along asynapsed regions regardless of whether or not they were associated with the sex chromosomes, suggesting that regions of autosomal chromosomes that fail to synapse undergo transcriptional silencing in humans. In summary, we observed that a subset of infertile men display alterations in the number and position of meiotic crossovers, which may contribute to both infertility and an increased risk of sperm aneuploidy. The fidelity of synapsis is also a critical factor in determining the outcome of gametogenesis in humans, as the transcriptional inactivation of asynapsed regions may silence meiotic genes, leading to meiotic arrest and infertility. / Medicine, Faculty of / Obstetrics and Gynaecology, Department of / Graduate
268

The evolutionary history of meiotic genes: early origins by duplication and subsequent losses

Pightling, Arthur William 01 May 2011 (has links)
Meiosis is necessary for sexual reproduction in eukaryotes. Genetic recombination between non-sister homologous chromosomes is needed in most organisms for successful completion of the first meiotic division. Proteins that function during meiotic recombination have been studied extensively in model organisms. However, less is known about the evolution of these proteins, especially among protists. We searched the genomes of diverse eukaryotes, representing all currently recognized supergroups, for 26 genes encoding proteins important for different stages of interhomolog recombination. We also performed phylogenetic analyses to determine the evolutionary relationships of gene homologs. At least 23 of the genes tested (nine that are known to function only during meiosis in model organisms) are likely to have been present in the Last Eukaryotic Common Ancestor (LECA). These genes encode products that function during: i) synaptonemal complex formation; ii) interhomolog DNA strand exchange; iii) Holliday junction resolution; and iv) sister-chromatid cohesion. These data strongly suggest that the LECA was capable of these distinct and important functions during meiosis. We also determined that several genes whose products function during both mitosis and meiosis are paralogs of genes whose products are known to function only during meiosis. Therefore, these meiotic genes likely arose by duplication events that occurred prior to the LECA. The Rad51 protein catalyzes DNA strand exchange during both mitosis and meiosis, while Dmc1 catalyzes interhomolog DNA strand exchange only during meiosis. To study the evolution of these important proteins, we performed degenerate PCR and extensive nucleotide and protein sequence database searches to obtain data from representatives of all available eukaryotic supergroups. We also performed phylogenetic analyses on the Rad51 and Dmc1 protein sequence data obtained to evaluate their utility as phylogenetic markers. We determined that evolutionary relationships of five of the six currently recognized eukaryotic supergroups are supported with Bayesian phylogenetic analyses. Using this dataset, we also identified ten amino acid residues that are highly conserved among Rad51 and Dmc1 protein sequences and, therefore, are likely to confer protein-specific functions. Due to the distributions of these residues, they are likely to have been present in the Rad51 and Dmc1 proteins of the LECA. To address an important issue with the gene inventory method of scientific inquiry, we developed a heuristic metric for determining whether apparent gene absences are due to limitations of the sequence search regimen or represent true losses of genes from genomes. We collected RNA polymerase I (Pol I), Replication Protein A (RPA), and DNA strand exchange (SE) sequence data from 47 diverse eukaryotes. We then compared the numbers of apparent absences to a single measure of protein sequence length and sequence conservation (Smith-Waterman pairwise alignment (S-W) scores) obtained by comparing yeast and human protein sequence data. Using Poisson correlation regression to analyze the Pol I and RPA subunit datasets, we confirmed that S-W scores and apparent gene absences are correlated. We also determined that genes encoding products that are critical for interhomolog SE in model organisms (Rad52, Rad51, Dmc1, Rad54, and Rdh54) have been lost frequently during eukaryotic evolution. Saccharomyces cerevisiae null rad52, dmc1, rad54, and rdh54 mutant phenotypes are suppressed by rad51 overexpression or mutation. If rad51 overexpression or mutation affects other eukaryotes in a similar fashion, this phenomenon may account for frequent losses of genes whose products are critical for the completion of meiosis in model organisms. Finally, we place this work into greater context with a review of hypotheses for the selective forces and mechanisms that resulted in the origin of meiosis. The review and the data presented in this thesis provide the basis for a model of the origin of meiotic genes in which meiosis arose from mitosis by large-scale gene duplication, following a preadaptation that served to reduce increased numbers of chromosomes (from diploid to haploid) caused by erroneous eukaryotic cell-cell fusions.
269

Time-resolved measurements of charge carrier dynamics in Mwir to Lwir InAs/InAsSb superlattices

Aytac, Yigit 01 July 2016 (has links)
All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as next generation materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential-transmission measurements are used here to demonstrate that "Ga-free" InAs/InAs₁₋xSbx T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements of unintentionally doped MWIR and LWIR InAs/InAs₁₋xSbx T2SLs demonstrate minority carrier (MC) lifetimes of 18.4 µs and 4.5 µs at 77 K, respectively. This represents a more than two order of magnitude increase compared to the 90 ns MC lifetime measured in a comparable MWIR and LWIR InAs/GaSb T2SL. Through temperature-dependent differential-transmission measurements, the various carrier recombination processes are differentiated and the dominant recombination mechanisms identified for InAs/InAs₁₋xSbx T2SLs. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs and potentially bulk Hg₁₋xCdxTe photodetectors. In addition to carrier lifetimes, the drift and diusion of excited charge carriers through the superlattice layers (i.e. in-plane transport) directly aects the performance of photo-detectors and emitters. All-optical ultrafast techniques were successfully used for a direct measure of in-plane diffusion coeffcients in MWIR InAs/InAsSb T2SLs using a photo-generated transient grating technique at various temperatures. Ambipolar diffusion coefficients of approximately 60 cm²/s were reported for MWIR InAs/InAs₁₋xSbxT2SLs at 293 K.
270

Caractérisation des interactions physiques et fonctionnelles entre le facteur d’assemblage de la chromatine, CAF-1, et des facteurs de la recombinaison homologue au cours de la réparation de l’ADN / Characterization of Physical and Functional Interactions Between the Chromatin Assembly Factor 1, CAF-1, and Homologous Recombination Factors During DNA Repair

Dai, Dingli 21 December 2018 (has links)
L’ADN est constamment exposé à des insultes génotoxiques endogènes et exogènes. Plusieurs mécanismes de réparations de l’ADN sont mis en œuvre pour préserver la stabilité du génome et de l’épigénome. La recombinaison homologue (RH) joue un rôle central dans la réparation des cassures double brin de l’ADN (DSBs) et le redémarrage des fourches de réplication en réponse à un stress réplicatif. Ces deux processus sont tous deux couplés à l’assemblage de la chromatine. Le facteur d’assemblage de la chromatine 1 (CAF-1) est un chaperon d’histone conservé au cours de l’évolution qui fonctionne dans le processus d’assemblage des nucléosomes couplé à la réparation de l’ADN et à la réplication, en déposant sur l’ADN les tétramères d’histones (H3-H4)2 nouvellement synthétisés. Chez la levure Schizosaccharomyces pombe, le complexe CAF-1 est constitué de trois sous-unités, Pcf1, Pcf2 et Pcf3. Il a été montré que CAF-1 agit dans l’étape de synthèse de l’ADN durant le processus de réplication dépendante de la recombinaison (RDR) et protège le désassemblage des D-loop par l’hélicase Rqh1, membre de la famille des hélicases RecQ. Dans cette étude, nous avons adressé le rôle de CAF-1 pendant la réparation de l’ADN par recombinaison homologue chez la levure Schizosaccharomyces pombe. Par l’utilisation d’approches in vivo et in vitro, nous avons validé des interactions protéines-protéines au sein d’un complexe contenant Rqh1, CAF-1, PCNA, et l’Histone H3. Nous avons montré que Rqh1 interagit avec Pcf1 et avec Pcf2 indépendamment l’un de l’autre, et que l’interaction Rqh1-Pcf1 est stimulée par des dommages à l’ADN. Nous avons mis en place une méthode d’analyse de liaison à la chromatine pour suivre l’association de CAF-1 à la chromatine en réponse aux dommages à l’ADN. Nous avons observé qu’un stress réplicatif, mais pas l’induction de cassures double brin de l’ADN, favorise l’association de CAF-1 à la chromatine. Nous avons identifié plusieurs facteurs de la RH nécessaire pour l’association de CAF-1 à la chromatine en réponse à un stress réplicatif. De plus, nous avons mis en évidence des interactions physiques entre Pcf1 et des facteurs de la recombinaison homologue, parmi lesquels RPA et Rad51. Nos données suggèrent que CAF-1 pourrait s’associer aux sites de synthèse d’ADN dépendent de la recombinaison via son interaction avec des facteurs de la RH. L’ensemble des données de cette étude contribuent à renforcer le role de CAF-1 couplé à réparation de l’ADN, et révèlent une interconnexion entre les facteurs de la RH et l’assemblage de la chromatine. / DNA is constantly exposed to both endogenous and exogenous genotoxic insults. Multiple DNA repair mechanisms are exploited to guard the genome and epigenome stability. Homologous recombination (HR) plays a major role in repairing DNA double strand breaks (DSBs) and restarting stalled replication forks under replicative stress. These two processes are both coupled to chromatin assembly. Chromatin assembly factor 1 (CAF-1) is a highly conserved histone chaperone known to function in a network of nucleosome assembly coupled to DNA repair and replication, by depositing newly synthesized histone (H3-H4)2 tetramers onto the DNA. The fission yeast CAF-1 complex consists of three subunits Pcf1, Pcf2 and Pcf3. CAF-1 has been previously reported to act at the DNA synthesis step during the process of recombination-dependent replication (RDR) and protects the D-loop from disassembly by the RecQ helicase family member, Rqh1. In this study, we addressed the role of CAF-1 during homologous-recombination-mediated DNA repair in fission yeast.Using in vivo and in vitro approaches, we validated interactions within a complex containing Rqh1, CAF-1, PCNA, and Histone H3. We showed that Rqh1 interacts with both Pcf1 and Pcf2 independently of each other, and the Pcf1-Rqh1 interaction is stimulated by DNA damage. We developed an in vivo chromatin binding assay to monitor the association of CAF-1 to the chromatin upon DNA damage. We observed that replication stress but not double strand break favors CAF-1 association to the chromatin. We identified that several HR factors are required for CAF-1 association to the chromatin upon replication stress. In support of this, we have identified physical interactions between Pcf1 and HR factors, including RPA and Rad51. Our data suggest that CAF-1 would associate with the site of recombination-dependent DNA synthesis through physical interactions with HR factors. Put together, this work contributes to strengthening the role of CAF-1 coupled to DNA repair, and reveals the crosstalk between HR factors and chromatin assembly.

Page generated in 0.1323 seconds