• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting future purchases with matrix factorization

Hojlas, Azer, Paulsrud, August January 2022 (has links)
This thesis aims to establish the efficacy of using matrix factorization to predict future purchases. Matrix factorisation is a machine learning method, commonly used to implement the collaborative filtering recommendation system. It finds items that a user may be interested in by comparing items that other similar users have rated, explicitly or implicitly, highly. To fulfill the purpose of the thesis, a qualitative and comparative approach was taken. First, three different implementations of matrix factorisation were created and trained on one year of purchase histories. Two generic methods of predicting future purchases, picking a random item and picking the top selling items, were also created to serve as a point of comparison. The ability to predict future purchases was established as the proportion of correct predictions a method could make. All five methods were then tested using a separate data set and the results compared. The results clearly show that matrix factorisation models are better at predicting future purchases than the generic models. However, the difference between the matrix factorization models was comparatively small. A notable discovery was that there was a decrease in the gap between all methods ability of predicting future purchases, as more predictions are made. The method of predicting a random item fared poorly, correctly predicting cumulatively less than one tenth of any other method. / Denna avhandling syftar till att fastställa matrisfaktoriseringens förmåga att förutsäga framtida köp. Matrisfaktorisering är en maskininlärningsmethod som vanligen används för att implementera rekommendationssystemet för kollaborativ filtrering. Den hittar artiklar som en användare kan vara intresserad av genom att jämföra artiklar som liknande användare har betygsatt högt, uttryckligen eller implicit. För att uppfylla avhandlingens syfte har en kvalitativ och jämförande studie genomförts. Först skapades tre olika matrisfaktoriserings modeler som tränades på ett års köphistorik. Två enkla metoder för att förutsäga framtida köp, att välja ett slumpmässigt föremål och välja de mest sålda föremålen, skapades också för att möjliggöra jämförelser. Möjligheten att förutsäga framtida köp fastställdes som andelen korrekta förutsägelser en metod kunde göra. Alla fem metoderna testades sedan med en separat datamängd och resultaten jämfördes. Resultaten visar tydligt att matrisfaktoriseringsmodeller är bättre på att förutsäga framtida köp än de enkla modellerna. Skillnaden mellan matrisfaktoriseringsmodellerna var dock jämförelsevis liten. En anmärkningsvärd upptäckt var att gapet mellan alla metoders förmåga att förutsäga framtida köp minskade, desto fler förutsägelser som gjordes. Metoden att förutsäga ett slumpmässigt objekt presterade dåligt, då kumulativa andelen korrekta förutsägelser var mindre än en tiondel av någon av de andra metoderna.
2

CrowdHealth: um sistema de recomendação de clínicas de saúde num contexto Smart-Health usando crowdsourcing

Pereira, Rodrigo Silva 28 August 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-12-21T15:44:57Z No. of bitstreams: 1 Rodrigo Silva Pereira_.pdf: 951778 bytes, checksum: 90c6af826318df7c8204565678dff935 (MD5) / Made available in DSpace on 2016-12-21T15:44:57Z (GMT). No. of bitstreams: 1 Rodrigo Silva Pereira_.pdf: 951778 bytes, checksum: 90c6af826318df7c8204565678dff935 (MD5) Previous issue date: 2016-08-28 / Nenhuma / Com a emergência do crowdsourcing junto a difusão mundial de smartphones esforços recentes e pesquisas importantes sobre o uso de crowdsourcing na área da saúde ou ainda smarthealth visam auxiliar na melhoria hábitos de saúde, construção de históricos médicos pessoais de longo prazo, análise e revisão de dados médica, controle de dietas alimentares, gerenciamento do estresse, analise e comparação de informações e assistência em tempo real para catástrofes. Porém, nenhum deles usou de crowdsourcing para recomendação de centros clínicos de saúde. Segundo Chatzimilioudis crowdsourcing refere-se "a um modelo distribuído de solução de problemas em que uma multidão de tamanho indefinido é contratada para resolver um problema complexo através de um convite aberto". Neste âmbito, este trabalho apresenta um modelo de sistema de recomendação de centros clínicos de saúde, chamado CrowdHealth. A principal contribuição do modelo de sistema de recomendação de centros clínicos é possibilitar a criação de uma relação ganha-ganha entre seus usuários que podem ser cidadãos, médicos ou ainda entidades ligadas ao governo. Na literatura encontramos alguns trabalhos que carecem a abordagem do uso de crowdsourcing como fonte de dados para recomendação de centros clínicos de saúde. Nós desenvolvemos um protótipo de aplicação baseada no modelo de sistema de recomendação de centros clínicos de saúde para proporcionar uma visão do que seria uma aplicação baseada no modelo de sistema de recomendação de centros clínicos de saúde. Para avaliar o nosso modelo, apresentamos um cenário hipotético baseado numa possível aplicação para mensurar a percepção dos usuários quanto a utilidade dos centros clínicos de saúde. Os cenários descritos levavam em consideração os seguintes critérios: (1) a distância entre do usuário ao centro clinico, (2) a avaliação dos usuários em relação ao atendimento recebido nos centros clínicos e (3) o tempo de atendimento informado pelos usuários. Desta forma realizamos uma simulação de requisições de recomendações de usuários usando um dataset real contendo informações do Foursquare. O arquivo do dataset possuia 227428 check-in’s na cidade de Nova Iorque, EUA. O arquivo, foi dividido em duas partes, onde a primeira representava os check-in’s realizados pelos usuários nos centros clínicos, e a segunda representava usuários requisitando por recomendações de centros clínicos em outros locais. Assim, foram criadas funções para simular os processos de cálculo do tempo de atendimento e avaliação dos centros clínicos por parte dos usuários. Também simulou-se usuários requisitando por recomendações de centros clínicos em outros locais. Então, medimos precisão e recuperação dos centros clínicos de saúde sugeridos para cada usuário. Obtivemos valores médios de 57,5% e 61,33% para precisão e recuperação, respectivamente. Com isso, nossa avaliação retrata que centros clínicos de saúde recomendados por uma aplicação baseada no CrowdHealth poderiam aumentar beneficamente a utilidade de centros clínicos de saúde recomendados para os usuários. / With the emergence of crowdsourcing with the worldwide spread of smartphones recent efforts and important research on the use of crowdsourcing in health or smart-health are intended to assist in improving health habits, construction of historical long-term medical personnel, medical analysis and data review, control diets, stress management, analysis and comparison of information and real-time assistance for disasters. However, none of them used the crowdsourcing for recommendation clinical health centers. In this context, this paper presents a model of clinical health centers recommendation system called CrowdHealth. The main contribution of clinical health centers recommendation system model is possible to create a win-win relationship between its users that can be citizens, doctors or entities linked to the government. In the literature we find some papers that require the use of crowdsourcing as a data source for recommendation clinical health centers approach. We have developed a prototype application based on clinical health centers recommendation system model to provide a vision of what would be an application based on the clinical health centers recommendation system model. To evaluate our model, we present a hypothetical scenario based on a possible application to measure the perception of users and the utility of clinical health centers. The scenarios described took into consideration the following criteria: (1) the distance from the user to the clinical center, (2) the evaluation of other users on the service received in the clinical centers and (3) the time of service reported by users. Thus we performed a simulation of user requests recommendations using a real dataset containing information of Foursquare. The file dataset haved 227428 check in’s in New York City, USA. The file was divided into two parts, where the first represented the textit check in ’s performed by users in clinical centers, and the second represented by requesting users polyclinics recommendations elsewhere. Thus, functions were created to simulate service time calculation and evaluation processes of polyclinics by users. Also users was simulated by ordering polyclinics recommendations elsewhere. So we measure precision and recall of health clinical centers suggested for each user. Average values obtained from 57.5 % and 61.33 % for precision and recall, respectively. Thus, our assessment that portrays clinical health centers recommended by an application based on CrowdHealth could increase beneficially the usefulness of clinical health centers recommended for users.

Page generated in 0.1017 seconds