501 |
Measuring Growth: The Reliability and Validity of the Utah Recovery ScaleKatzenbach, Ray J. 18 May 2012 (has links) (PDF)
Recently the direction of consumer mental health care in the United States has shifted in terms of its approach to recovery. In this sense recovery is not thought to be a complete amelioration of symptoms, but rather the acquisition of meaningful relationships, independent living, and fulfilling work. In response to these changes, the Utah division of the National Alliance for the Mentally Ill (NAMI-Utah) conducted consumer focus groups for the purpose of developing a tool to monitor this new conceptualization of recovery. The focus groups generated 10 recovery indicators based on recovery as the Substance Abuse and Mental Health Services Administration have defined it. This study explored initial psychometric reliability and validity estimates for these recovery indicators and their ability to track changes in recovery over time. In addition, the study also explored the relationship between distress reduction and recovery both concurrently and over time.
|
502 |
"I'm not going through this alone": The Lived Experiences of Community College Students in a Collegiate Recovery ProgramNiese, Marianne Ruggles 11 August 2022 (has links)
No description available.
|
503 |
All-semiconductor High Power Mode-locked Laser SystemKim, Kyungbum 01 January 2006 (has links)
All-optical synchronization and its application in advanced optical communications have been investigated in this dissertation. Dynamics of all-optical timing synchronization (clock recovery) using multi-section gain-coupled distributed-feedback (MS-GC DFB) lasers are discussed. A record speed of 180-GHz timing synchronization has been demonstrated using this device. An all-optical carrier synchronization (phase and polarization recovery) scheme from PSK (phase shift keying) data is proposed and demonstrated for the first time. As an application of all-optical synchronization, the characterization of advanced modulation formats using a linear optical sampling technique was studied. The full characterization of 10-Gb/s RZ-BPSK (return-to-zero binary PSK) data has been demonstrated. Fast lockup and walk-off of the all-optical timing synchronization process on the order of nanoseconds were measured in both simulation and experiment. Phase stability of the recovered clock from a pseudo-random bit sequence signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5 % clock phase stability for large variations in power, bit rate and optical carrier frequency of the input data and therefore is suitable for applications in ultrafast optical packet switching. All-optical timing synchronization of 180-Gb/s data streams has been demonstrated using a MS-GC DFB laser. The recovered clock has a jitter of less than 410 fs over a dynamic range of 7 dB. All-optical carrier synchronization from phase modulated data utilizes a phase sensitive oscillator (PSO), which used a phase sensitive amplifier (PSA) as a gain block. Furthermore, all-optical carrier synchronization from 10-Gb/s BPSK data was demonstrated in experiment. The PSA is configured as a nonlinear optical loop mirror (NOLM). A discrete linear system analysis was carried out to understand the stability of the PSO. Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the sampling pulses be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have a negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of the sampling source. Characterization of the 10-Gb/s RZ-BPSK signal was demonstrated using the coherent detection technique. Measurements of the optical intensity profile, chirp and constellation diagram were demonstrated. A CW local oscillator was used and electrical sampling was performed using a sampling scope. A novel feedback scheme was used to stabilize homodyne detection.
|
504 |
Methods and Observations for the Influence of Temperature on Volatile Loss from Wine FermentationGoldfarb, David Martin 01 February 2015 (has links) (PDF)
Background and Aims: Volatile loss of carbon dioxide, ethanol, esters and other compounds occurs during wine fermentation. When collected nondestructively, valuable ethanol and aroma compounds can be preserved for various uses while mitigating production restrictions and regulations regarding volatile organic compound (VOC) loss from wine production. Knowledge of the volume of volatiles lost during wine fermentation contributes to a better understanding of the magnitude of possibilities for resource recovery/aroma recovery, the implications of volatile loss on wine composition as well as a more clear understanding of the possible effect of alcoholic fermentation on air quality. The aim of this study was to contribute to a better understanding of how the loss of volatiles from wine fermentation varies with temperature.
Methods and Results: Temperature controlled microscale fermenters were developed and infrared detection technology was adapted to study the effect of temperature on volatile loss. Results are presented for the rates and volumes of volatile loss from the fermentation of California Syrah at constant temperatures (17, 23, 27, 33˚C) in 1.9L containers. Observed volatile losses are compared to theoretical losses based on kinetic and stoichiometric principals. Each ferment started with 1200g of fruit and was adjusted to 23.5˚B. Following Brix adjustment, final volumes ranged from 1129.16mL to 1160.10mL.
Conclusion: The loss of VOC from fermentation increases exponentially with temperature. Total VOC and CO2 loss appears to be slightly less than theory predicts.
Significance of the Study: A significant loss of compounds occurs during wine fermentation. Commercial and environmental benefits may be achieved if efforts are made to recover and make use of these otherwise wasted compounds. Funding provided by the Agricultural Research Initiative, California State University.
|
505 |
Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge : Development of a Sustainability Assessment Framework and its ApplicationGupta, Akash Som January 2020 (has links)
Clean water and renewable energy are essential requirements to build resilience towards the adverse effects of climate change and global warming. Advanced wastewater treatment options may provide a unique opportunity to recover various useful resources such as energy (biogas), fertilizers, minerals, and metals embedded in the wastewater stream. However, considerable challenges remain when it comes to designing and planning sustainable wastewater treatment systems. This thesis focuses on the avenues of energy recovery from wastewater treatment plants (WWTP), by evaluating the potential for biogas recovery from wastewater and sewage sludge treatment in WWTPs. Various available technologies for biogas recovery are examined and evaluated to understand their viability in different applications and relative performance. Further, the methodologies and tools employed to assess such energy recovery systems are evaluated, covering the technical, economic, and environmental performance aspects. A sustainability assessment framework is then developed, using appropriate sustainability indicators to assess performance. The framework is applied to a case study of a WWTP in the emerging city of Tbilisi, Georgia. A spreadsheet tool is also developed to aid the sustainability (technoeconomic and environmental) assessments for the case study. The case study results reveal a significant biogas recovery potential, with annual energy generation potential of 130 GWh from combined heat and power (CHP) recovery, and a potential to avoid 28,200 tCO2eq emissions every year, when biogas is recovered only from the wastewater. The recovery potential increases when biogas is recovered from both wastewater and sewage sludge. Further, the contribution of overall resource (energy and nutrient) recovery in WWTPs to the Sustainable Development Goals is examined. By studying the linkage of various benefits to the different SDGs, the multilateral and cross-cutting nature of benefits from resource recovery is clearly illustrated. The thesis concludes with the discussion of possible future technologies and perspectives that can enhance the sustainability of WWTPs and help transform them into Wastewater Resource Recovery Facilities (WRRFs). / Rent vatten och förnybar energi är väsentliga krav för att bygga motståndskraft mot de negativa effekterna av klimatförändringar och global uppvärmning. Avancerade avloppsreningsalternativ kan ge en unik möjlighet att återvinna olika användbara resurser som energi (biogas), gödselmedel, mineraler och metaller inbäddade i avloppsvatten strömmen. Det finns emellertid stora utmaningar när det gäller att utforma och planera hållbara reningssystem. Denna avhandling fokuserar på möjligheterna till energiåtervinning från avloppsreningsverk (WWTP), genom att utvärdera potentialen för biogasåtervinning från avloppsvatten- och avloppssrening i WWTP. Olika tillgängliga tekniker för återvinning av biogas undersöks och utvärderas för att förstå deras livskraft i olika applikationer och relativa prestanda. Vidare utvärderas de metoder och verktyg som används för att utvärdera sådana system för energiåtervinning som täcker de tekniska, ekonomiska och miljömässiga aspekterna. En ram för hållbarhetsbedömning utvecklas sedan med hjälp av lämpliga hållbarhetsindikatorer för att bedöma prestanda. Ramverket tillämpas på en fallstudie av en WWTP i den framväxande staden Tbilisi, Georgien. Ett kalkylarkverktyg utvecklas också för att underlätta bedömningarna av hållbarhet (teknisk ekonomi och miljö) för fallstudien. Resultaten från fallstudien avslöjar en betydande återvinningspotential för biogas, med en årlig energiproduktions potential på 130 GWh från kombinerad värme och kraft (CHP), och en potential att undvika 28.200 ton CO2-utsläpp varje år, när biogas endast återvinns från avloppsvattnet. Återvinningspotentialen ökar när biogas utvinns från både avloppsvatten och avloppsslam. Vidare undersöks bidraget från den totala återhämtningen av energi (energi och näringsämnen) i WWTP till målen för hållbar utveckling. Genom att studera kopplingen mellan olika fördelar till de olika SDG: erna illustreras den multilaterala och tvärgående karaktären av fördelarna med resursåtervinning. Avhandlingen avslutas med diskussionen om möjliga framtida tekniker och perspektiv som kan förbättra WWTP: s hållbarhet och hjälpa till att omvandla dem till anläggning för återvinning av resurser från avloppsvatten.
|
506 |
Do Recovery Experiences during Lunch Breaks Impact Worker Well-Being?Lin, Bing C. 18 August 2009 (has links)
No description available.
|
507 |
Understanding the Changing Landscape of Client Perspectives of Recovery from Anorexia NervosaLeslie, Jennifer C. January 2014 (has links)
No description available.
|
508 |
A Qualitative Analysis of Participant Feedback from the Wellness Management and Recovery (WMR) ProgramHupp, Danelle R. 19 September 2011 (has links)
No description available.
|
509 |
Modeling, Analysis, and Open-Loop Control of an Exhaust Heat Recovery System for Automotive Internal Combustion EnginesOwen, Ross P. 20 October 2011 (has links)
No description available.
|
510 |
Feasibility of using Waste Heat as a power source to operate Microbial Electrolysis Cells towards Resource RecoveryJain, Akshay 05 May 2020 (has links)
Wastewater treatment has developed as a mature technology over time. However, conventional wastewater treatment is a very energy-intensive process. Bioelectrochemical system (BES) is an emerging technology that can treat wastewater and also recover resources such as energy in the form of electricity/hydrogen gas and nutrients such as nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that, in the presence of an additional voltage, can treat wastewater and generate hydrogen gas. This is a promising approach for wastewater treatment and value-added product generation, though it may not be sustainable in the long run, as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is one such resource that has not been researched extensively, particularly at the low-temperature spectrum. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The feasibility of TEG to act as a power source for an MEC was investigated and its performance compared to the external power source. Various cold sources were analyzed to characterize TEG performance. To explore this integrated TEG-MEC system further, a hydraulic connection was added between the two systems. Wastewater was used as a cold source for TEG and it was recirculated to the anode of the MEC. This system showed improved performance with both systems mutually benefitting each other. The operational parameters were analyzed for the optimization of the system. The integrated system could generate hydrogen at a rate of 0.36 ± 0.05 m3 m-3 d-1 for synthetic domestic wastewater treatment. For the practical application, it is necessary to estimate the cost and narrow the focus on the functions of the system. Techno-economic analysis was performed for MEC with cost estimation and net present value model to understand the economic viability of the technology. The application niche of the BES was described and directions for addressing the challenges towards a full-scale operation were discussed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem. / Doctor of Philosophy / An average person produces about 50-75 gallons of wastewater every day. In addition to the households, wastewater is generated from industries and agricultural practices. As the population increases, the quantity of wastewater production will inevitably increase. To keep our rivers and oceans clean and safe, it is essential to treat the wastewater before it is discharged to the water bodies. However, the conventional wastewater treatment is a very energy (and thus cost) intensive process. For low-income and developing parts of the world, it is difficult to adapt the technology everywhere in its present form. Furthermore, as the energy is provided mostly by fossil fuels, their limited reserves and harmful environmental effects make it critical to find alternative methods that can treat the wastewater at a much lower energy input. For a circular and sustainable economy, it is important to realize wastewater as a resource which can provide us energy, nutrients, and water, rather than discard it as a waste. Bioelectrochemical systems (BES) is an emerging technology that can simultaneously treat wastewater and recover resources in the form of electricity/hydrogen gas, and nitrogen and phosphorus compounds. Microbial electrolysis cell (MEC) is a type of BES that is used to treat wastewater and generate hydrogen gas. An additional voltage is supplied to the MEC for producing hydrogen. In the long run, this may not be sustainable as it relies on fossil fuels to provide that additional energy. Thus, it is important to explore alternative renewable resources that can provide energy to power MEC. Waste heat is a byproduct of many industrial processes and widely available. This was utilized as a renewable resource by converting waste heat to electricity using a device called thermoelectric generator (TEG). TEG converted simulated waste heat from an anaerobic digester to power an MEC. The mutual benefit for MEC and TEG was also explored by connecting the system electrically and hydraulically. Cost-estimation of the system was performed to understand the economic viability and functions of the system were developed. The present system provides a sustainable method for wastewater treatment and resource recovery which can play an important role in human health, social and economic development and a strong ecosystem.
|
Page generated in 0.0686 seconds