• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • Tagged with
  • 48
  • 48
  • 39
  • 39
  • 37
  • 33
  • 33
  • 28
  • 22
  • 19
  • 18
  • 18
  • 18
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Redes Neurais Probabilísticas para Classificação de Imagens Binárias

PIRES, Glauber Magalhães 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T15:52:53Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Este trabalho propõe uma nova abordagem para classificação de objetos em imagens binárias de duas dimensões usando descritores de curvatura, descritores de momento e uma rede neural artificial. O modelo proposto classifica objetos utilizando uma rede neural supervisionada e, através do uso de uma distribuição de probabilidade, associa um coeficiente de certeza para cada classificação. Foram utilizados os descritores de imagens conhecidos por Momento de Hu e o Curvature Scale Space para prover uma representação invariante às transformações das imagens, enquanto que o modelo neural proposto utiliza a correlação máxima entre as representações dos objetos para efetuar a classificação e uma distribuição de probabilidade para calcular o coeficiente de certeza da classificação de cada imagem. A avaliação da robustez baseou-se na medida da precisão da classificação para imagens rotacionadas, escaladas e com transformações não-lineares que formam um conjunto de imagens padrão, usado pelo grupo MPEG na criação da norma MPEG-7, demonstrando assim a aplicabilidade do método
12

Um Descritor baseado em análise local de cor para busca de imagens em grandes cole ções

Kimura, Petrina de Assis da Silva 02 May 2011 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-02-05T13:07:49Z No. of bitstreams: 1 Dissertação - Petrina Kimura.pdf: 6170367 bytes, checksum: efa4d4fa978c23e41b25ae1b997e5e53 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-02-05T13:08:16Z (GMT) No. of bitstreams: 1 Dissertação - Petrina Kimura.pdf: 6170367 bytes, checksum: efa4d4fa978c23e41b25ae1b997e5e53 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-02-05T13:08:47Z (GMT) No. of bitstreams: 1 Dissertação - Petrina Kimura.pdf: 6170367 bytes, checksum: efa4d4fa978c23e41b25ae1b997e5e53 (MD5) / Made available in DSpace on 2016-02-05T13:08:47Z (GMT). No. of bitstreams: 1 Dissertação - Petrina Kimura.pdf: 6170367 bytes, checksum: efa4d4fa978c23e41b25ae1b997e5e53 (MD5) Previous issue date: 2011-05-02 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / Advances in multimedia technology led to a large increase in the number of images digital, in consequence, also grew? ä need for m? ethods and more ef fective cient and to store and retrieve this count? udo multimedia ?? edia. Most m? Proposed ethods alcan in literature? Çam high n ?? íveis of and insufficiency and effi c? CFIA (the top 70% accuracy) however most of them perform experiments using small images bases (less 10,000 images), previously classi fied in good ned categories, thus facilitating search task and consequently increasing ní ?? ble accuracy of the evaluated descriptors. On the other hand, when these m? Ethods are evaluated in large paste? Heterogeneous tions, Ni vel ?? accuracy? and relatively low. Thinking about this problem, this dissertation? Tion proposes the descriptor Location Color Pixel Classi cation (LCPC), an m? Ethod based on local analysis to search from large pictures basis. The proposed approach extracts character ?? color ísticas, classifi ing the pixels as border or inside using the same classi scheme is? tion of m? ethod Border / Interior Pixel Classication (BIC), by? are a simple partitioning scheme, but too much and cient and effi cient to incorporate spatial information about the contents? Udo visual image. Experiments were conducted using three bases of images, including one with more than 100,000 images collected from the Web. The results show that the proposed approach? And much higher when compared with other visual descriptors presented previously in literature, with gains in average accuracy of 51% till is 105% / Os avanços em tecnologia multimídia ocasionou um grande crescimento da quantidade de imagens digitais, em consequência disso, cresceu também a necessidade de métodos mais eficazes e eficientes para armazenar e recuperar esse conteúdo multimídia. A maioria dos métodos propostos na literatura alcançam altos níveis de eficiência e eficácia (a cima de 70% de precisão), entretanto grande parte delas executam experimentos usando bases de imagens pequenas (menos de 10.000 imagens), previamente classificadas em categorias bem de nidas, facilitando assim a tarefa de busca e, consequentemente aumentando os níveis de precisão dos descritores avaliados. Por outro lado, quando esses métodos são avaliados em grandes coleções heterogêneas, o nível de precisão e relativamente baixo. Pensando nesse problema, esta dissertação propõe o descritor Local Color Pixel Classication (LCPC), um método baseado em análise local para busca em grandes bases de imagens. A abordagem proposta extrai características de cor, classificando os pixels como borda ou interior, usando o mesmo esquema de classificação do método Border/Interior Pixel Classication (BIC), através de um esquema de particionamento simples, mas muito eficiente e eficaz para incorporar informações espaciais sobre o conteúdo visual da imagem. Experimentos foram conduzidos usando três bases de imagens, incluindo uma com mais de 100.000 imagens coletadas da Web. Os resultados obtidos mostram que a abordagem proposta e bastante superior quando comparado com outros descritores visuais previamente apresentados na literatura, com ganhos em precisão média de 51% até 105%
13

Processamento de consultas por similaridade em imagens médicas visando à recuperação perceptual guiada pelo usuário / Similarity Queries Processing Aimed at Retrieving Medical Images Guided by the User´s Perception

Marcelo Ponciano da Silva 19 March 2009 (has links)
O aumento da geração e do intercâmbio de imagens médicas digitais tem incentivado profissionais da computação a criarem ferramentas para manipulação, armazenamento e busca por similaridade dessas imagens. As ferramentas de recuperação de imagens por conteúdo, foco desse trabalho, têm a função de auxiliar na tomada de decisão e na prática da medicina baseada em estudo de casos semelhantes. Porém, seus principais obstáculos são conseguir uma rápida recuperação de imagens armazenadas em grandes bases e reduzir o gap semântico, caracterizado pela divergência entre o resultado obtido pelo computador e aquele esperado pelo médico. No presente trabalho, uma análise das funções de distância e dos descritores computacionais de características está sendo realizada com o objetivo de encontrar uma aproximação eficiente entre os métodos de extração de características de baixo nível e os parâmetros de percepção do médico (de alto nível) envolvidos na análise de imagens. O trabalho de integração desses três elementos (Extratores de Características, Função de Distância e Parâmetro Perceptual) resultou na criação de operadores de similaridade, que podem ser utilizados para aproximar o sistema computacional ao usuário final, visto que serão recuperadas imagens de acordo com a percepção de similaridade do médico, usuário final do sistema / The continuous growth of the medical images generation and their use in the day-to-day procedures in hospitals and medical centers has motivated the computer science researchers to develop algorithms, methods and tools to store, search and retrieve images by their content. Therefore, the content-based image retrieval (CBIR) field is also growing at a very fast pace. Algorithms and tools for CBIR, which are at the core of this work, can help on the decision making process when the specialist is composing the images analysis. This is based on the fact that the specialist can retrieve similar cases to the one under evaluation. However, the main reservation about the use of CBIR is to achieve a fast and effective retrieval, in the sense that the specialist gets what is expected for. That is, the problem is to bridge the semantic gap given by the divergence among the result automatically delivered by the system and what the user is expecting. In this work it is proposed the perceptual parameter, which adds to the relationship between the feature extraction algorithms and distance functions aimed at finding the best combination to deliver to the user what he/she expected from the query. Therefore, this research integrated the three main elements of similarity queries: the image features, the distance function and the perceptual parameter, what resulted in searching operators. The experiments performed show that these operators can narrow the distance between the system and the specialist, contributing to bridge the semantic gap
14

Arcabouço para recuperação de imagens por conteúdo visando à percepção do usuário / Content-based image retrieval aimed at reaching user´s perception

Bugatti, Pedro Henrique 29 October 2012 (has links)
Na última década observou-se grande interesse pra o desenvolvimento de técnicas para Recuperação de Imagens Baseada em Conteúdo devido à explosão na quantidade de imagens capturadas e à necessidade de armazenamento e recuperação dessas imagens. A área médica especificamente é um exemplo que gera um grande fluxo de informações, principalmente imagens digitais para a realização de diagnósticos. Porém um problema ainda permanecia sem solução que tratava-se de como atingir a similaridade baseada na percepção do usuário, uma vez que para que se consiga uma recuperação eficaz, deve-se caracterizar e quantificar o melhor possível tal similaridade. Nesse contexto, o presente trabalho de Doutorado visou trazer novas contribuições para a área de recuperação de imagens por contúdo. Dessa forma, almejou ampliar o alcance de consultas por similaridade que atendam às expectativas do usuário. Tal abordagem deve permitir ao sistema CBIR a manutenção da semântica da consulta desejada pelo usuário. Assim, foram desenvolvidos três métodos principais. O primeiro método visou a seleção de características por demanda baseada na intenção do usuário, possibilitando dessa forma agregação de semântica ao processo de seleção de características. Já o segundo método culminou no desenvolvimento de abordagens para coleta e agragação de perfis de usuário, bem como novas formulações para quantificar a similaridade perceptual dos usuários, permitindo definir dinamicamente a função de distância que melhor se adapta à percepção de um determinado usuário. O terceiro método teve por objetivo a modificação dinâmica de funções de distância em diferentes ciclos de realimentação. Para tanto foram definidas políticas para realizar tal modificação as quais foram baseadas na junção de informações a priori da base de imagens, bem como, na percepção do usuário no processo das consultas por similaridade. Os experimentos realizados mostraram que os métodos propostos contribuíram de maneira efetiva para caracterizar e quantificar a similaridade baseada na percepção do usuário, melhorando consideravelmente a busca por conteúdo segundo as expectativas dos usuários / In the last decade techniques for content-based image retrieval (CBIR) have been intensively explored due to the increase in the amount of capttured images and the need of fast retrieval of them. The medical field is a specific example that generates a large flow of information, especially digital images employed for diagnosing. One issue that still remains unsolved deals with how to reach the perceptual similarity. That is, to achieve an effectivs retrieval, one must characterize and quantify the perceptual similarity regarding the specialist in the field. Therefore, the present thesis was conceived tofill in this gap creating a consistent support to perform similarity queries over images, maintaining the semantics of a given query desired by tyhe user, bringing new contribuitions to the content-based retrieval area. To do so, three main methods were developed. The first methods applies a novel retrieval approach that integrates techniques of feature selection and relevance feedback to preform demand-driven feature selection guided by perceptual similarity, tuning the mining process on the fly, according to the user´s intention. The second method culminated in the development of approaches for harvesting and surveillance of user profiles, as well as new formulations to quantify the perceptual similarity of users , allowing to dynamically set the distance function that best fits the perception of a given user. The third method introduces a novel approach to enhance the retrieval process through user feedback and profiling, modifying the distance function in each feedback cycle choosing the best one for each cycle according to the user expectation. The experiments showed that the proposed metods effectively contributed to capture the perceptual similarity, improving in a great extent the image retrieval according to users´expectations
15

"Recuperação de imagens por conteúdo através de análise multiresolução por Wavelets" / "Content based image retrieval through multiresolution wavelet analysis

Castañon, Cesar Armando Beltran 28 February 2003 (has links)
Os sistemas de recuperação de imagens por conteúdo (CBIR -Content-based Image Retrieval) possuem a habilidade de retornar imagens utilizando como chave de busca outras imagens. Considerando uma imagem de consulta, o foco de um sistema CBIR é pesquisar no banco de dados as "n" imagens mais similares à imagem de consulta de acordo com um critério dado. Este trabalho de pesquisa foi direcionado na geração de vetores de características para um sistema CBIR considerando bancos de imagens médicas, para propiciar tal tipo de consulta. Um vetor de características é uma representação numérica sucinta de uma imagem ou parte dela, descrevendo seus detalhes mais representativos. O vetor de características é um vetor "n"-dimensional contendo esses valores. Essa nova representação da imagem pode ser armazenada em uma base de dados, e assim, agilizar o processo de recuperação de imagens. Uma abordagem alternativa para caracterizar imagens para um sistema CBIR é a transformação do domínio. A principal vantagem de uma transformação é sua efetiva caracterização das propriedades locais da imagem. Recentemente, pesquisadores das áreas de matemática aplicada e de processamento de sinais desenvolveram técnicas práticas de "wavelet" para a representação multiescala e análise de sinais. Estas novas ferramentas diferenciam-se das tradicionais técnicas de Fourier pela forma de localizar a informação no plano tempo-freqüência; basicamente, elas têm a capacidade de mudar de uma resolução para outra, o que faz delas especialmente adequadas para a análise de sinais não estacionários. A transformada "wavelet" consiste de um conjunto de funções base que representa o sinal em diferentes bandas de freqüência, cada uma com resoluções distintas correspondentes a cada escala. Estas foram aplicadas com sucesso na compressão, melhoria, análise, classificação, caracterização e recuperação de imagens. Uma das áreas beneficiadas, onde essas propriedades têm encontrado grande relevância, é a área médica, através da representação e descrição de imagens médicas. Este trabalho descreve uma abordagem para um banco de imagens médicas, que é orientada à extração de características para um sistema CBIR baseada na decomposição multiresolução de "wavelets" utilizando os filtros de Daubechies e Gabor. Essas novas características de imagens foram também testadas utilizando uma estrutura de indexação métrica "Slim-tree". Assim, pode-se aumentar o alcance semântico do sistema cbPACS (Content-Based Picture Archiving and Comunication Systems), atualmente em desenvolvimento conjunto entre o Grupo de Bases de Dados e Imagens do ICMC--USP e o Centro de Ciências de Imagens e Física Médica do Hospital das Clínicas de Riberão Preto-USP. / Content-based image retrieval (CBIR) refers to the ability to retrieve images on the basis of the image content. Given a query image, the goal of a CBIR system is to search the database and return the "n" most similar (close) ones to the query image according to a given criteria. Our research addresses the generation of feature vectors of a CBIR system for medical image databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a "n"-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a CBIR system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years, researches in applied mathematics and signal processing have developed practical "wavelet" methods for the multiscale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading one type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The "wavelet" transform is a set of basis functions that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancements, analysis, classifications, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is medical imaging. In this work we describe an approach to CBIR for medical image databases focused on feature extraction based on multiresolution "wavelets" decomposition, taking advantage of the Daubechies and Gabor. Fundamental to our approach is how images are characterized, such that the retrieval procedure can bring similar images within the domain of interest, using a metric structure indexing, like the "Slim-tree". Thus, it increased the semantic capability of the cbPACS(Content-Based Picture Archiving and Comunication Systems), currently in joined developing between the Database and Image Group of the ICMC--USP and the Science Center for Images and Physical Medic of the Clinics Hospital of Riberão Preto--USP.
16

Caracterização e recuperação de imagens usando dicionários visuais semanticamente enriquecidos / Image characterization and retrieval using visual dictionaries semantically enriched

Pedrosa, Glauco Vitor 24 August 2015 (has links)
A análise automática da similaridade entre imagens depende fortemente de descritores que consigam caracterizar o conteúdo das imagens em dados compactos e discriminativos. Esses dados extraídos e representados em um vetor-de-características tem o objetivo de representar as imagens nos processos de mineração e análise para classificação e/ou recuperação. Neste trabalho foi explorado o uso de dicionários visuais e contexto para representar e recuperar as características locais das imagens utilizando formalismos estendidos com alto poder descritivo. Esta tese apresenta em destaque três novas propostas que contribuem competitivamente com outros trabalhos da literatura no avanço do estado-da-arte, desenvolvendo novas metodologias para a caracterização de imagens e para o processamento de consultas por similaridade. A primeira proposta estende a modelagem Bag-of-Visual-Words, permitindo codificar a interação entre palavras-visuais e suas disposições espaciais na imagem. Para tal fim, três novas abordagem são apresentadas: (i) Weighted Histogram (WE); (ii) Bunch-of-2-grams e (iii) Global Spatial Arrangement (GSA). Cada uma dessas técnicas permitem extrair informações semanticamente complementares, que enriquecem a representação final das imagens descritas em palavras-visuais. A segunda proposta apresenta um novo descritor, chamado de Bag-of-Salience-Points (BoSP), que caracteriza e analisa a dissimilaridade de formas (silhuetas) de objetos explorando seus pontos de saliências. O descritor BoSP se apoia no uso de um dicionário de curvaturas e em histogramas espaciais para representar sucintamente as saliências de um objeto em um único vetor-de-características de tamanho fixo, permitindo recuperar formas usando funções de distâncias computacionalmente rápidas. Por fim, a terceira proposta apresenta um novo modelo de consulta por similaridade, denominada Similarity Based on Dominant Images (SimDIm), baseada no conceito de Imagens Dominantes, que é um conjunto que representa, de uma maneira mais diversificada e reduzida, toda a coleção de imagens da base de dados. Tal conceito permite dar mais eficiência quando se deseja analisar o contexto da coleção, que é o objetivo da proposta. Os experimentos realizados mostram que os métodos propostos contribuem de maneira efetiva para caracterizar e quantificar a similaridade entre imagens por meio de abordagens estendidas baseadas em dicionários visuais e análise contextual, reduzindo a lacuna semântica existente entre a percepção humana e a descrição computacional. / The automatic similarity analysis between images depends heavily on the use of descriptors that should be able to characterize the images\' content in compact and discriminative features. These extracted features are represented by a feature-vector employed to represent the images in the process of mining and analysis for classification and/or retrieval. This work investigated the use of visual dictionaries and context to represent and retrieve the local image features using extended formalism with high descriptive power. This thesis presents three new proposals that contribute in advancing the state-of-the-art by developing new methodologies for characterizing images and for processing similarity queries by content. The first proposal extends the Bag-of-Visual-Words model, by encoding the interaction between the visual words and their spatial arrangements in the image space. For this, three new techniques are presented: (i) Weighted Histogram (WE); (ii) Bunch-of--grams and (iii) Global Spatial Arrangement (GSA). These three techniques allow to extract additional semantically information that enrich the final image representation described in visual-words. The second proposal introduces a new descriptor, called Bag-of-Salience-Points (BoSP), which characterizes and analyzes the dissimilarity of shapes (silhouettes) exploring their salient point. The BoSP descriptor is based on using a dictionary of curvatures and spatial-histograms to represent succinctly the saliences of a shape into a single fixed-length feature-vector, allowing to retrieve shapes using distance functions computationally fast. Finally, the third proposal introduces a new similarity query model, called Similarity based on Dominant Images (SimDIm), based on the concept of dominant images, which is a set of images representing the entire collection of images of the database in a more diversified and reduced manner. This concept allows to efficiently analyze the context of the entire collection, which is the final goal. The experiments showed that the proposed methods effectively contributed to characterize and quantify the similarity between images using extended approaches based on visual dictionaries and contextual analysis, reducing the semantic gap between human perception and computational description.
17

Métodos adaptativos de segmentação aplicados à recuperação de imagens por conteúdo / Adaptative segmentation methods applied to Content-Based Image Retrieval

Balan, André Guilherme Ribeiro 14 May 2007 (has links)
A possibilidade de armazenamento de imagens no formato digital favoreceu a evolução de diversos ramos de atividades, especialmente as áreas de pesquisa e clínica médica. Ao mesmo tempo, o volume crescente de imagens armazenadas deu origem a um problema de relevância e complexidade consideráveis: a Recuperação de Imagens Baseada em Conteúdo, que, em outras palavras, diz respeito à capacidade de um sistema de armazenamento processar operações de consulta de imagens a partir de características visuais, extraídas automaticamente por meio de métodos computacionais. Das principais questões que constituem este problema, amplamente conhecido pelo termo CBIR - Content-Based Image Retrieval, fazem parte as seguintes: Como interpretar ou representar matematicamente o conteúdo de uma imagem? Quais medidas que podem caracterizar adequadamente este conteúdo? Como recuperar imagens de um grande repositório utilizando o conteúdo extraído? Como estabelecer um critério matemático de similaridade entre estas imagens? O trabalho desenvolvido e apresentado nesta tese busca, exatamente, responder perguntas deste tipo, especialmente para os domínios de imagens médicas e da biologia genética, onde a demanda por sistemas computacionais que incorporam técnicas CBIR é consideravelmente alta por diversos motivos. Motivos que vão desde a necessidade de se buscar informação visual que estava até então inacessível pela falta de anotações textuais, até o interesse em poder contar com auxílio computacional confiável para a importante tarefa de diagnóstico clínico. Neste trabalho são propostos métodos e soluções inovadoras para o problema de segmentação e extração de características de imagens médicas e imagens de padrões espaciais de expressão genética. A segmentação é o processo de delimitação automático de regiões de interesse da imagem que possibilita uma caracterização bem mais coerente do conteúdo visual, comparado com as tradicionais técnicas de caracterização global e direta da imagem. Partindo desta idéia, as técnicas de extração de características desenvolvidas neste trabalho empregam métodos adaptativos de segmentação de imagens e alcançam resultados excelentes na tarefa de recuperação baseada em conteúdo / Storing images in digital format has supported the evolution of several branches of activities, specially the research area and medical clinic. At the same time, the increasing volume of stored images has originated a topic of considerable relevance and complexity: the Content- Based Imagem Retrieval, which, in other works, is related to the ability of a computational system in processing image queries based on visual features automatically extracted by computational methods. Among the main questions that constitute this issue, widely known as CBIR, are these: How to mathematically express image content? What measures can suitably characterize this content? How to retrieve images from a large dataset employing the extracted content? How to establish a mathematical criterion of similarity among the imagens? The work developed and presented in this thesis aims at answering questions like those, especially for the medical images domain and genetical biology, where the demand for computational systems that embody CBIR techniques is considerably high for several reasons. Reasons that range from the need for retrieving visual information that was until then inaccessible due to the lack of textual annotations, until the interest in having liable computational support for the important task of clinical diagnosis. In this work are proposed innovative methods and solutions for the problem of image segmentation and feature extraction of medical images and images of gene expression patterns. Segmentation is the process that enables a more coherent representation of image?s visual content than that provided by traditional methods of global and direct representation. Grounded in such idea, the feature extraction techniques developed in this work employ adaptive image segmentation methods, and achieve excellent results on the task of Content-Based Image Retrieval
18

Desenvolvimento de métodos para extração, comparação e análise de características intrínsecas de imagens médicas, visando à recuperação perceptual por conteúdo / Development of methods for extraction, comparison and analysis of intrinsic features of medical images, aiming at perceptual content-based retrieval

Felipe, Joaquim Cezar 16 December 2005 (has links)
A possibilidade de recuperar e comparar imagens usando as suas características visuais intrínsecas é um recurso valioso para responder a consultas por similaridade em imagens médicas. Desse modo, a agregação desses recursos aos Sistemas de Arquivamento e Comunicação de Imagens (Picture Archiving and Communication Systems - PACS) vêm potencializar a utilidade e importância destes no contexto de atividades tais como ensino e treinamento de novos radiologistas, estudos de casos e auxílio ao diagnóstico de forma geral, uma vez que as consultas por similaridade permitem que casos parecidos possam ser facilmente recuperados. O trabalho apresentado nesta tese possui duas vertentes. Primeiro, ele apresenta novos métodos de extração e de características, com o objetivo de obter a essência das imagens, considerando um critério específico. Os atributos obtidos pelos algoritmos de extração são armazenados em vetores de características para posteriormente serem utilizados para indexar e recuperar as imagens baseando-se em seu conteúdo, para responder a consultas por similaridade. Há uma relação próxima entre os vetores de características e as funções de distância utilizadas para compará-los. Assim, a segunda parte deste trabalho trata da proposta, análise e comparação de novas famílias de funções de distância. As funções de distância propostas têm por objetivo tratar o problema do gap semântico, o qual representa o principal obstáculo das funções de distância tradicionais, derivadas da família Lp, quando processam consultas por similaridade. As principais contribuições desta tese incluem o desenvolvimento de novos métodos de extração e comparação de características de imagens, que operam sobre os três principais descritores de baixo nível de imagens: distribuição de cor, textura e forma. Os experimentos realizados mostraram que os ganhos em precisão são maiores para os métodos propostos, quando comparados com algoritmos tradicionais. No que diz respeito às famílias de funções de distância propostas (WAID e SAID), pelos resultados iniciais obtidos, podemos afirmar que eles são bastante promissores no sentido de se aproximarem da expectativa do usuário, no momento de comparar imagens. Os resultados obtidos com esse trabalho podem ser futuramente integrados aos PACS. Particularmente, pretendemos acrescentar novos algoritmos e métodos ao cbPACS, que consiste em um sistema PACS em construção, desenvolvido em uma colaboração entre o Grupo de Bases de Dados e Imagens (GBDI) do Instituto de Ciências Matemáticas e de Computação - USP e o Centro de Ciências da Imagens e Física Médica (CCIFM) da Faculdade de Medicina de Ribeirão Preto - USP / The ability of retrieving and comparing images using their inherent pictorial information is a valuable asset to answer similarity queries over medical images. Thus, having such resources added in Picture Archiving and Communication Systems (PACS) increase their applicability and importance in the context of teaching and training new radiologists on diagnosing, since that similar cases can be easily retrieved. Similarity queries also play an important role on gathering close images, what allows to perform case studies, as well as to aid on diagnosing. The work presented in this thesis is twofold. First, it presents new feature extraction techniques, which aim at obtaining the essence of the images regarding a given criteria. The features obtained by the algorithms are stored in feature vectors and employed to index and retrieve the images by content, in order to answer similarity queries. There is a close relationship among feature vectors and the distance function employed to compare them. Thus, the second, part of this work concerns the comparison, analysis and proposal of new families of distance functions to compare the features extracted from the images. The distance functions proposed intend to deal with the semantic gap problem, which is the main drawback of the traditional distance functions derived from the Lp metrics when processing similarity queries. The main contributions of this thesis include the development of new image feature extractors that works on the three aspects of raw image data (color distribution, texture and shape). The experiments have shown that the gain in precision are higher for all the feature extractors proposed, when comparing with the state-of-the-art algorithms. Regarding the two families of distance functions WAID and SAID proposed, by the initial experiments performed we can claim that they are very promising on preserving the user expectation when comparing images. The results provided by this work can be straightforwardly integrated to PACS. Particularly, we intend to add the new algorithms and methods to cbPACS, which is under joined development between the Image Data Base Group of Instituto de CiLncias Matemáticas e de Computaçno of USP and Centro de CiLncias de Imagens e Física Médica of Faculdade de Medicina de Ribeirno Preto of USP
19

Classificação e recuperação de imagens por cor utilizando técnicas de inteligência artificial

Bender, Túlio Cléber 24 July 2003 (has links)
Made available in DSpace on 2015-03-05T13:53:43Z (GMT). No. of bitstreams: 0 Previous issue date: 24 / Nenhuma / A recuperação e classificação de imagens é um tema bastante pesquisado atualmente. Além dos desafios encontrados no campo teórico e prático para permitir que máquinas possuam a capacidade de visão, sua pesquisa resulta em várias aplicações práticas para o dia-a-dia. A visão computação, grande área na qual está inserida a recuperação e classificação de imagens, possui aplicações e práticas dentre as quais podemos citar softwares capazes de recuperarem imagens em bases de dados de imagens, reconhecimento de pessoas por características de biometria(impressões digitais, reconhecimento por íris ou face), localização e quantificação de logomarcas na mídia, localização de objetos numa cena e mecanismos de visão para a robótica. A pesquisa desenvolvida nesta dissertação foca-se em obter uma generalização através do aprendizado das características de uma coleção de imagens pertencentes a uma mesma classe as quais servirão como exemplo de aprendizagem, com isto obtendo um modelo que identifique esta classe. Para tan / Image retrieval and classification are today the subject of extensive research. This topic poses both theoretical and practical challenges as researchers attempt to give machines such as computers and robots the ability to “see”. Image retrieval and classification are part of a wider field known as Computer Vision, which encompasses several practical applications such as image retrieval from databases storing only raw images, biometric recognition (from images of finger-prints, face or iris), retrieval of visual trademarks and logos from advertisements, location of objects in a scene and vision techniques in robotics. The research developed in this work is focused on obtaining a generalization of characteristics extracted from a collection of images belonging to a single class using supervised learning techniques. The result is a model that “identifies” a given class of images. To achieve this, a review of the state-of-the-art in content-based image retrieval systems and Machine Learning techniques was neede
20

Uma abordagem prática e eficiente de consultas por similaridade para suporte a diagnóstico por imagens. / A pratical and eficient approach of searches for similarity to support diagnose by images.

Rosa, Natália Abdala 26 September 2002 (has links)
O objetivo desse trabalho é apresentar as características de um Sistema de Apoio ao Diagnóstico em Sistema Hospitalar Suportando Busca por Imagens Similares, a ser desenvolvido e implantado no Hospital das Clínicas de Ribeirão Preto. A recuperação de imagens baseada no conteúdo é uma área de pesquisa que tem evoluído bastante nos últimos anos. Assim, um sistema de busca e obtenção de imagens, utilizando tal técnica, deve ser extensível aos novos algoritmos de extração de características e métodos de indexação. A extração de características de imagens, tais como informações de cor, textura, forma e o relacionamento entre elas são utilizadas para descrever o conteúdo das imagens. Essas características são então utilizadas para indexar e possibilitar a comparação de imagens no processo de recuperação. O sistema proposto utilizará um método de indexação de dados recém-desenvolvido – a Slim-tree – para indexar as características extraídas das imagens. Através desse método o Sistema de Apoio ao Diagnóstico possibilitará a consulta por conteúdo em imagens médicas. / This works presents the main characteristics of a diagnosis support system based on image similarity search for medical applications. This system was developed to be used in the Clinical Hospital of Ribeirao Preto of the University of Sao Paulo. The content-based image retrieval (CBIR) researching area has evolved greatly in the last years. Thus, a CBIR system should be able to incorporate the new techniques developed, such as, new feature extraction algorithms and indexing methods among others. Traditionally, the main features extracted from images to get the image essence are color, texture, shape and the relationship among them. Therefore, such features describe the images under analysis, and are used to index and to compare images during the content-based retrieval process. The proposed system takes advantage of a new metric access method - the Slim-tree, which allows the indexing and the retrieval of the images through their extracted features.

Page generated in 1.917 seconds