Spelling suggestions: "subject:"recuperação dde imagens"" "subject:"recuperação dee imagens""
31 |
TSS e TSB: novos descritores de forma baseados em tensor scale / TSS & TSB: new shape descriptors based on tensor scaleFreitas, Anderson Meirelles 24 October 2017 (has links)
Neste trabalho são apresentados dois novos descritores de forma para tarefas de recuperação de imagens por conteúdo (CBIR) e análise de formas, que são construídos sobre uma extensão do conceito de tensor scale baseada na Transformada de Distância Euclidiana (EDT). Primeiro, o algoritmo de tensor scale é utilizado para extrair informações da forma sobre suas estruturas locais (espessura, orientação e anisotropia) representadas pela maior elipse contida em uma região homogênea centrada em cada pixel da imagem. Nos novos descritores, o limite do intervalo das orientações das elipses do modelo de tensor scale é estendido de 180º para 360º, de forma a melhor discriminar a descrição das estruturas locais. Então, com base em diferentes abordagens de amostragem, visando resumir informações mais relevantes, os novos descritores são construídos. No primeiro descritor proposto, Tensor Scale Sector (TSS), a distribuição das orientações relativas das estruturas locais em setores circulares é utilizada para compor um vetor de características de tamanho fixo, para uma caracterização de formas baseada em região. No segundo descritor, o Tensor Scale Band (TSB), foram considerados histogramas das orientações relativas extraídos de bandas concêntricas, formando também um vetor de características de tamanho fixo, com uma função de distância de tempo linear. Resultados experimentais com diferentes bases de formas (MPEG-7 e MNIST) são apresentados para ilustrar e validar os métodos. TSS demonstra resultados comparáveis aos métodos estado da arte, que geralmente dependem de algoritmos custosos de otimização de correspondências. Já o TSB, com sua função de distância em tempo linear, se demonstra como uma solução adequada para grandes coleções de formas. / In this work, two new shape descriptors are proposed for tasks in Content-Based Image Retrieval (CBIR) and Shape Analysis tasks, which are built upon an extended tensor scale based on the Euclidean Distance Transform (EDT). First, the tensor scale algorithm is applied to extract shape attributes from its local structures (thickness, orientation, and anisotropy) as represented by the largest ellipse within a homogeneous region centered at each image pixel. In the new descriptors, the upper limit of the interval of local orientation of tensor scale ellipses is extended from 180º to 360º, to better discriminate the description of local structures. Then, the new descriptors are built based on different sampling approaches, aiming to summarize the most relevant features. In the first proposed descriptor, Tensor Scale Sector descriptor (TSS), the local distributions of relative orientations within circular sectors are used to compose a fixed-length feature vector, for a region-based shape characterization. For the second method, the Tensor Scale Band (TSB) descriptor, histograms of relative orientations are considered for each circular concentric band, to also compose a fixed-length feature vector, with linear time distance function for matching. Experimental results for different shape datasets (MPEG-7 and MNIST) are presented to illustrate and validate the methods. TSS can achieve high retrieval values comparable to state-of-the-art methods, which usually rely on time-consuming correspondence optimization algorithms, but uses a simpler and faster distance function, while the even faster linear complexity of TSB leads to a suitable solution for very large shape collections.
|
32 |
Adequando consultas por similaridade para reduzir a descontinuidade semântica na recuperação de imagens por conteúdo / Reducing the semantic gap content-based image retrieval with similarity queriesRazente, Humberto Luiz 31 August 2009 (has links)
Com o crescente aumento no número de imagens geradas em mídias digitais surgiu a necessidade do desenvolvimento de novas técnicas de recuperação desses dados. Um critério de busca que pode ser utilizado na recuperação das imagens é o da dissimilaridade, no qual o usuário deseja recuperar as imagens semelhantes à uma imagem de consulta. Para a realização das consultas são empregados vetores de características extraídos das imagens e funções de distância para medir a dissimilaridade entre pares desses vetores. Infelizmente, a busca por conteúdo de imagens em consultas simples tende a gerar resultados que não correspondem ao interesse do usuário misturados aos resultados significativos encontrados, pois em geral há uma descontinuidade semântica entre as características extraídas automaticamente e a subjetividade da interpretação humana. Com o intuito de tratar esse problema, diversos métodos foram propostos para a diminuição da descontinuidade semântica. O foco principal desta tese é o desenvolvimento de métodos escaláveis para a redução da descontinuidade semântica em sistemas recuperação de imagens por conteúdo em tempo real. Nesta sentido, são apresentados: a formalização de consultas por similaridade que permitem a utilização de múltiplos centros de consulta em espaços métricos como base para métodos de realimentação de relevância; um método exato para otimização dessas consultas nesses espaços; e um modelo para tratamento da diversidade em consultas por similaridade e heurísticas para sua otimização / The increasing number of images captured in digital media fostered the developmet of new methods for the recovery of these images. Dissimilarity is a criteria that can be used for image retrieval, where the results are images that are similar to a given reference. The queries are based on feature vectors automatically extracted from the images and on distance functions to measure the dissimilarity between pair of vectors. Unfortunately, the search for images in simple queries may result in images that do not fulfill the user interest together with meaningful images, due to the semantic gap between the image features and to the subjectivity of the human interpretation. This problem leaded to the development of many methods to deal with the semantic gap. The focus of this thesis is the development of scalable methods aiming the semantic gap reduction in real time for content-based image retrieval systems. For this purpose, we present the formal definition of similarity queries based on multiple query centers in metric spaces to be used in relevance feedback methods, an exact method to optimize these queries and a model to deal with diversity in nearest neighbor queries including heuristics for its optimization
|
33 |
Segmentação da estrutura cerebral hipocampo por meio de nuvem de similaridade / Automatic hippocampus segmentation through similarity cloudAthó, Fredy Edgar Carranza 03 August 2011 (has links)
O hipocampo é uma estrutura cerebral que possui importância primordial para o sistema de memória humana. Alterações no seus tecidos levam a doenças neurodegenerativas, tais como: epilepsia, esclerose múltipla e demência, entre outras. Para medir a atrofia do hipocampo é necessário isolá-lo do restante do cérebro. A separação do hipocampo das demais partes do cérebro ajuda aos especialistas na análise e o entendimento da redução de seu volume e detecção de qualquer anomalia presente. A extração do hipocampo é principalmente realizada de modo manual, a qual é demorada, pois depende da interação do usuário. A segmentação automática do hipocampo é investigada como uma alternativa para contornar tais limitações. Esta dissertação de mestrado apresenta um novo método de segmentação automático, denominado Modelo de Nuvem de Similaridade (Similarity Cloud Model - SimCM). O processo de segmentação é dividido em duas etapas principais: i) localização por similaridade e ii) ajuste de nuvem. A primeira operação utiliza a nuvem para localizar a posição mais provável do hipocampo no volume destino. A segunda etapa utiliza a nuvem para corrigir o delineamento final baseada em um novo método de cálculo de readequação dos pesos das arestas. Nosso método foi testado em um conjunto de 235 MRI combinando imagens de controle e de pacientes com epilepsia. Os resultados alcançados indicam um rendimento superior tanto em efetividade (qualidade da segmentação) e eficiência (tempo de processamento), comparado com modelos baseados em grafos e com modelos Bayesianos. Como trabalho futuro, pretendemos utilizar seleção de características para melhorar a construção da nuvem e o delineamento dos tecidos / The hippocampus is a particular structure that plays a main role in human memory systems. Tissue modifications of the hippocampus lead to neurodegenerative diseases as epilepsy, multiple sclerosis, and dementia, among others. To measure hippocampus atrophy, it is crucial to get its isolated representation from the whole brain volume. Separating the hippocampus from the brain helps physicians in better analyzing and understanding its volume reduction, and detecting any abnormal behavior. The extraction of the hippocampus is dominated by manual segmentation, which is time consuming mainly because it depends on user interaction. Therefore, automatic segmentation of the hippocampus has being investigated as an alternative solution to overcome such limitations. This master dissertation presents a new automatic segmentation method called Similarity Cloud Model (SimCM) based on hippocampus feature extraction. The segmentation process consists of two main operations: i) localization by similarity, and ii) cloud adjustment. The first operation uses the cloud to localize the most probable position of the hippocampus in a target volume. The second process invokes the cloud to correct the final labeling, based on a new method for arc-weight re-adjustment. Our method has been tested in a dataset of 235 MRIs combining healthy and epileptic patients. Results indicate superior performance, in terms of effectiveness (segmentation quality) and efficiency (processing time), in comparison with similar graph-based and Bayesian-based models. As future work, we intend to use feature selection to improve cloud construction and tissue delineation
|
34 |
Sistematização da percepção médica na construção de sistemas para recuperação de imagens por conteúdo / Systematization of medical perception in implementing of content-based image retrieval systemsSilva, Marcelo Ponciano da 27 February 2014 (has links)
Nos últimos anos o mundo tem vivenciado uma avalanche de novas tecnologias para auxílio ao diagnóstico médico. Esses esforços buscam um diagnóstico rápido e preciso através de exames e informações sobre a condição física do paciente. Através do uso de imagens médicas, a radiologia busca a visualização de órgãos ou estruturas internas do corpo humano para encontrar respostas às suspeitas de problemas físicos expressos por sinais e sintomas relatados pelo paciente. Nessa área, os Sistemas de Comunicação e Armazenamento de Imagens (PACS) têm ajudado no armazenamento e organização do crescente número de imagens geradas pelos exames realizados nos hospitais. Trabalhos de pesquisa médica têm evidenciado o potencial de uso dessas imagens como auxílio à prática da Medicina Baseada em Casos Similares (MBCS). Por esse motivo, há na literatura um esforço contínuo em desenvolver técnicas computacionais para recuperação de imagens baseada em conteúdos similares (CBIR) em grandes conjuntos de dados. As consultas por similaridade são essenciais para apoiar a prática da MBCS e a descoberta de comportamentos de lesões causadas por diversas doenças. A evolução e intensificação das pesquisas em CBIR têm encontrado vários desafios. Um desses é a divergência entre os resultados obtidos automaticamente e aqueles esperados pelos radiologistas (descontinuidade semântica). Outro desafio é a falta de estudos sobre a viabilidade clínica dessas ferramentas como forma de auxílio ao diagnóstico. Esses obstáculos são dois dos principais responsáveis pela não efetivação dessa tecnologia no ambiente médico-hospitalar. Mediante o exposto acima, este trabalho de pesquisa propõe um mecanismo para contornar essa descontinuidade semântica e ao mesmo tempo aproximar o CBIR do ambiente real de aplicação. A contribuição principal deste trabalho foi o desenvolvimento de uma metodologia baseada em parâmetros perceptuais que aproximam o sistema ao nível de percepção do usuário médico. Em seguida, foi realizado um estudo sobre a viabilidade clínica do sistema CBIR no Hospital das Clínicas de Ribeirão Preto. A metodologia proposta foi aplicada e os resultados comprovaram a aplicabilidade de Sistemas CBIR como ferramenta de auxílio ao diagnóstico em um ambiente clínico real / In recent years the world has experienced an avalanche of new technologies to aid medical diagnosis. These efforts seek a quick and accurate diagnosis through exams and information about the patient\'s physical condition. The radiology studies the visualization of the organs or structures through the use of images. In this area, the Picture Archiving and Communication Systems (PACS) have helped in the storage and organization of the growing number of images generated by exams performed in hospitals. Medical research papers have shown the potential use of these images as an aid to the Similar Case-Based Reasoning (SCBR) practice in Medicine. For this reason, there is an ongoing effort in the literature to develop computational techniques for Content-Based Image Retrieval (CBIR) in large data sets. Similarity queries are essential to support the practice of SCBR. The evolution and intensification of research in CBIR have encountered several challenges. One of these is the discrepancy between the results obtained automatically and those expected by radiologists (semantic gap). Another challenge is the lack of studies on the clinical viability of these tools as a way to assist in diagnosis. These obstacles are the two main responsible for reservation in using this technology in the medical hospital environment. Considering this scenario, this research proposes a mechanism to overcome this semantic gap and bring the real environment to the CBIR application. The main contribution for this research was the development of a methodology based on Perceptual Parameters to approximate the system to the level of user perception. Then we conducted a study on the clinical viability of a CBIR system at the Clinical Hospital of the University of São Paulo at Ribeirão Preto. The proposed methodology was applied and the results showed the applicability of CBIR systems as a computer aided diagnosis tool in a real clinical environment
|
35 |
Proposta de um histograma perceptual de cores como característica para recuperação de imagens baseada em conteúdo / Proposal of a perception color histogram as characteristic for content-based image retrievalSilva, Katia Veloso 14 September 2006 (has links)
Este trabalho foi desenvolvido com o intuito de se estabelecer uma metodologia para a classificação das cores de imagens digitais em cores perceptuais para se gerar um vetor de características que permita recuperar imagens através de seu conteúdo em uma base de dados. Em trabalhos e estudos correlatos analisados, as metodologias de agrupamento das diversas cores possíveis de uma imagem não permitem uma associação entre a cor digitalizada e a cor percebida por seres humanos. Estudos mostram que a maioria das culturas humanas associam às cores apenas onze termos: vermelho, amarelo, violeta, azul, verde, rosa, marrom, preto, branco, laranja e cinza. Este trabalho propõe, portanto, uma metodologia baseada em regras da lógica fuzzy, que permite associar a todas as possíveis cores de imagens digitais uma das onze cores culturais definidas, criando assim um histograma perceptual de cores. Isso permitiu a geração de um vetor de características para a recuperação de imagens baseada em conteúdo em uma base de dados. / This work aims at establishing a digital image classification methodology based on perceptual colors, by generating a feature vector that allows retrieving images from a database by their content. In related works the methodologies of grouping the diverse possible colors of an image do not allow associate digitized colors and those colors perceived by human beings. Studies show that the majority of human being culture associates only eleven terms to all the possible colors: red, yellow, blue, green, pink, brown, black, white, purple, orange and gray. This work purpose a methodology based on fuzzy logic that allows to associate the eleven cultural color terms with all of digitized colors by a perceptual color histogram. The image color quantization generates a feature vector used for content-based image retrieval. The results show that it is possible to use the perceptual color histogram for CBIR and in the semantic gap reduction.
|
36 |
Análise da influência de funções de distância para o processamento de consultas por similaridade em recuperação de imagens por conteúdo / Analysis of the influence of distance functions to answer similarity queries in content-based image retrieval.Bugatti, Pedro Henrique 16 April 2008 (has links)
A recuperação de imagens baseada em conteúdo (Content-based Image Retrieval - CBIR) embasa-se sobre dois aspectos primordiais, um extrator de características o qual deve prover as características intrínsecas mais significativas dos dados e uma função de distância a qual quantifica a similaridade entre tais dados. O grande desafio é justamente como alcançar a melhor integração entre estes dois aspectos chaves com intuito de obter maior precisão nas consultas por similaridade. Apesar de inúmeros esforços serem continuamente despendidos para o desenvolvimento de novas técnicas de extração de características, muito pouca atenção tem sido direcionada à importância de uma adequada associação entre a função de distância e os extratores de características. A presente Dissertação de Mestrado foi concebida com o intuito de preencher esta lacuna. Para tal, foi realizada a análise do comportamento de diferentes funções de distância com relação a tipos distintos de vetores de características. Os três principais tipos de características intrínsecas às imagens foram analisados, com respeito a distribuição de cores, textura e forma. Além disso, foram propostas duas novas técnicas para realização de seleção de características com o desígnio de obter melhorias em relação à precisão das consultas por similaridade. A primeira técnica emprega regras de associação estatísticas e alcançou um ganho de até 38% na precisão, enquanto que a segunda técnica utilizando a entropia de Shannon alcançou um ganho de aproximadamente 71% ao mesmo tempo em que reduz significantemente a dimensionalidade dos vetores de características. O presente trabalho também demonstra que uma adequada utilização das funções de distância melhora efetivamente os resultados das consultas por similaridade. Conseqüentemente, desdobra novos caminhos para realçar a concepção de sistemas CBIR / The retrieval of images by visual content relies on a feature extractor to provide the most meaningful intrinsic characteristics (features) from the data, and a distance function to quantify the similarity between them. A challenge in this field supporting content-based image retrieval (CBIR) to answer similarity queries is how to best integrate these two key aspects. There are plenty of researching on algorithms for feature extraction of images. However, little attention have been paid to the importance of the use of a well-suited distance function associated to a feature extractor. This Master Dissertation was conceived to fill in this gap. Therefore, herein it was investigated the behavior of different distance functions regarding distinct feature vector types. The three main types of image features were evaluated, regarding color distribution, texture and shape. It was also proposed two new techniques to perform feature selection over the feature vectors, in order to improve the precision when answering similarity queries. The first technique employed statistical association rules and achieve up to 38% gain in precision, while the second one employing the Shannon entropy achieved 71%, while siginificantly reducing the size of the feature vector. This work also showed that the proper use of a distance function effectively improves the similarity query results. Therefore, it opens new ways to enhance the acceptance of CBIR systems
|
37 |
Recuperação de imagens digitais com base na distribuição de características de baixo nível em partições do domínio utilizando índice invertidoProença, Patrícia Aparecida 29 March 2010 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / The main goal of a images retrieval system is to obtain images from a collection that
assist a need of the user. To achieve this objective, in generally, the systems of retrieval
of images calculate the similarity between the user's need represented by a query and
representations of the images of the collection. Such an objective is dicult of being
obtain due to the subjectivity of the similarity concept among images, because a same
image can be interpreted in dierent ways by dierent people. In the attempt of solving
this problem the content based image retrieval systems explore the characteristics of low
level color, forms and texture in the calculation of the similarity among the images. A
problem of this approach is that in most of the systems the calculation of the similarity
is accomplished being compared the query image with all of the images of the collection,
turning the dicult and slow processing. Considering the indexation of characteristics
of low level of partitions of digital images mapped to an inverted index, this work looks
for improvements in the acting of the processing of querys and improve in the precision
considering the group of images retrieval in great bases of data. We used an approach
based in inverted index that is here adapted for partitions images. In this approach the
concept of term of the retrieval textual, main element of the indexation, it is used in
the work as characteristic of partitions of images for the indexation. Experiments show
improvement in the quality of the precision using two collections of digital images. / O principal objetivo de um sistema de recuperação de imagens é obter imagens de
uma coleção que atendam a uma necessidade do usuário. Para atingir esse objetivo, em
geral, os sistemas de recuperação de imagens calculam a similaridade entre a necessidade
do usuário, representada por uma consulta, e representações das imagens da coleção. Tal
objetivo é difícil de ser alcançado devido à subjetividade do conceito de similaridade entre
imagens, visto que uma mesma imagem pode ser interpretada de formas diferentes por
pessoas distintas. Na tentativa de resolver este problema os sistemas de recuperação de
imagens por conteúdo exploram as características de baixo nível cor, forma e textura no
cálculo da similaridade entre as imagens. Um problema desta abordagem é que na maioria
dos sistemas o cálculo da similaridade é realizado comparando-se a imagem de consulta
com todas as imagens da coleção, tornando o processamento difícil e lento. Considerando
a indexação de características de baixo nível de partições de imagens digitais mapeadas
para um índice invertido, este trabalho busca melhorias no desempenho do processamento
de consultas e ganho na precisão considerando o conjunto de imagens recuperadas em
grandes bases de dados. Utilizamos uma abordagem baseada em índice invertido, que
é aqui adaptada para imagens particionadas. Nesta abordagem o conceito de termo
da recuperação textual, principal elemento da indexação, é utilizado no trabalho como
característica de partições de imagens para a indexação. Experimentos mostram ganho
na qualidade da precisão usando duas coleções de imagens digitais. / Mestre em Ciência da Computação
|
38 |
Inclusão de diversidade em consultas aos vizinhos mais próximos usando descritores distintos para similaridade e diversidadeCardoso, Ana Claudia 18 April 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-09-13T18:11:26Z
No. of bitstreams: 1
DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Approved for entry into archive by Ronildo Prado (bco.producao.intelectual@gmail.com) on 2018-01-25T17:53:52Z (GMT) No. of bitstreams: 1
DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Approved for entry into archive by Ronildo Prado (bco.producao.intelectual@gmail.com) on 2018-01-25T17:54:04Z (GMT) No. of bitstreams: 1
DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5) / Made available in DSpace on 2018-01-25T18:00:35Z (GMT). No. of bitstreams: 1
DissACC.pdf: 1668214 bytes, checksum: 82bf6ff6918613ce74cc691a951a22b0 (MD5)
Previous issue date: 2017-04-18 / Não recebi financiamento / One of the ways to recover images in a database is through similarity queries. Using characteristics
extracted from these images, such as color, shape or texture, this work seeks to
identify similarities to a central query element. However, the results may be very similar to
each other, which is not always the expected result. In addition to the redundancy in the results,
the problem of the ’semantic gap’, which is a divergence in the evaluation of similarity
between images performed by the computer considering its numerical representation (low
level characteristics) and the human perception about the image (high level characteristics).
In order to improve the quality of the results, we sought to minimize the issue of redundancy
and the ’semantic gap’ through the use of more than one descriptor in queries for similarity.
We sought to explore the inclusion of diversity using one descriptor to treat similarity and
another descriptor to treat diversity, more generally a metric space for similarity and another
for diversity. For the implementation of the query by similarity was used the consultation
to several neighbors closer. Considering that the descriptors may be distinct and one of
them may have greater numerical representativeness, it was necessary to do the normalization,
considering the methods of normalization by the greater distance and normalization
by the greater approximate distance with balancing by the intrinsic dimension. An exhaustive
search algorithm was used to perform the tests. The experiments were carried out in a
classified database. To evaluate the semantic quality of the results, a measure was proposed
that evaluates the inclusion of diversity considering the diversity present in the query only
considering the similarity and the maximum diversity that can be included. A comparison
was made between the result obtained and the considered ideal, which refers to the value of
l defined by the user himself. By comparing the results obtained with the results obtained
in the queries for a single descriptor, the evaluation of the included diversity followed the
trend of l, which allows to say that normalization and balancing is necessary. In addition,
it is intended in the future to study new ways of normalizing. / Uma das formas para se recuperar imagens em banco de dados, é através de consultas por
similaridade. Utilizando características extraídas dessas imagens, como cor, forma ou textura,
busca-se identificar semelhanças a um elemento central de consulta. No entanto, os
resultados nas consultas podem ser muito semelhantes entre si, o que nem sempre é o resultado
esperado. Além da redundância nos resultados, deve-se destacar o problema do ‘gap
semântico’, que é a divergência na avaliação da similaridade entre imagens realizada pelo
computador considerando a sua representação numérica (características de baixo nível) e a
percepção humana sobre a imagem (características de alto nível). Com o objetivo de melhorar
a qualidade dos resultados nas consultas buscou-se minimizar a questão da redundância
e do ‘gap semântico’ através da utilização de mais de um descritor nas consultas por similaridade.
Buscou-se explorar a inclusão de diversidade utilizando-se um descritor para tratar
a similaridade e outro descritor para tratar a diversidade, mais genericamente, um espaço
métrico para similaridade e outro para a diversidade. Para a implementação da consulta por
similaridade utilizou-se a consulta aos vizinhos diversos mais próximos. Considerando-se
que os descritores utilizados podem ser distintos e que um deles possa ter maior representatividade
numérica do que o outro, foi necessário fazer a normalização, sendo considerados os
métodos da normalização pela maior distância e normalização pela maior distancia aproximada
com balanceamento pela dimensão intrínseca. Para a realização dos testes utilizou-se
um algoritmo de busca exaustiva. Os experimentos foram realizados em uma base de dados
classificada. Para avaliar a qualidade semântica dos resultados foi proposta uma medida
que avalia a inclusão de diversidade considerando a diversidade presente na consulta apenas
considerando a similaridade e a diversidade máxima que pode ser incluída. Foi feita
uma comparação entre o resultado obtido e o considerado ideal, que refere-se ao valor de
l definido pelo próprio usuário. Comparando-se os resultados alcançados com os resultados
obtidos nas consultas para um único descritor, a avaliação da diversidade incluída
acompanhou a tendência de l, o que permite dizer que a normalização e balanceamento é
necessário. Além disso, pretende-se futuramente estudar novas formas de normalizar.
|
39 |
Mineração visual de imagens aliada a consultas pelos k-vizinhos diversos mais próximos: flexibilizando e maximizando o entendimento de consultas por conteúdo de imagens / Mineração visual de imagens aliada a consultas pelos k-vizinhos diversos mais próximos: flexibilizando e maximizando o entendimento de consultas por conteúdo de imagensDias, Rafael Loosli 23 August 2013 (has links)
Made available in DSpace on 2016-06-02T19:06:11Z (GMT). No. of bitstreams: 1
5726.pdf: 4603491 bytes, checksum: 0fe3fa824a018f481106303c4816bf07 (MD5)
Previous issue date: 2013-08-23 / Financiadora de Estudos e Projetos / Content-Based Image Retrieval systems use visual information like color, shape and texture to represent images in feature vectors. The numerical representation found for the images is used in query execution through a metric to evaluate the distance between vectors. In general, there is an inconsistency in the evaluation of similarity between images according to human perception and the results computed by CBIR systems, which is called Semantic Gap. One way to overcome this problem is by the addition of a diversity factor in query execution, allowing the user to specify a degree of dissimilarity between the resulting images and changing the query result. Adding diversity in consultation, however, requires high computational cost and the reduction of possible subsets to be analyzed is a difficult task to be understood by the user. This masters degree thesis aims to make use of Visual Data Mining techniques applied to queries in CBIR systems, improving the interpretability of the measure of similarity and diversity, as well as the relevance of the result according to the judgment and prior knowledge of the user. The user takes an active role in the retrieval of images by their content, guiding its result and, consequently, reducing the Semantic Gap. Additionally, a better understanding of the diversity and similarity factors involved in the query is supported by visualization and interaction techniques. / Sistemas de recuperação de imagens por conteúdo (do Inglês, Content-Based Image Retrieval - CBIR) utilizam informações visuais de cor, forma e textura para representar as imagens em vetores de características. A representação numérica encontrada para as imagens é utilizada na execução da consulta através de uma métrica que avalie a distância entre os vetores. Em geral, existe uma inconsistência entre a percepção do ser humano na avaliação de similaridade entre imagens se comparada com a computada por sistemas CBIR, sendo esta descontinuidade denominada Gap Semântico. Adicionar um fator de diversidade na consulta tem-se mostrado como uma maneira de superar este problema, permitindo que o usuário especifique o grau de dissimilaridade entre as imagens resultantes e altere o resultado da consulta. Adicionar diversidade em consulta, no entanto, requer alto custo computacional e a redução das possibilidades de conjuntos para resposta é de difícil entendimento para o usuário. Este trabalho de mestrado propôs a utilização de técnicas de Mineração Visual de Dados (MVD) aplicadas sobre consultas em sistemas CBIR, melhorando a interpretabilidade da medida de similaridade e diversidade, assim como a relevância do resultado obtido. O usuário passa a exercer um papel ativo na consulta por conteúdo de imagens, permitindo que o mesmo dirija o processo, aproximando o resultado ao esperado pela cognição humana e reduzindo o gap semântico.
|
40 |
ARQUITETURA PARA RECUPERAÇÃO DE IMAGENS DIAGNÓSTICAS BASEADA EM CONTEÚDO: UMA FERRAMENTA PARA AUXÍLIO À RADIOLOGIA EM AMBIENTE PACS / ARCHITECTURE FOR CONTENT-BASED DIAGNOSTIC IMAGE RETRIEVAL: A TOOL TO AID IN RADIOLOGY PACS ENVIRONMENTBerni, Cristiano Albiero 08 November 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / One of the main forms of diagnosis used nowadays matches the exams performed by
analysis of diagnostic images. Due to a growing request for this kind of diagnostic and the
repetitive manual procedure of the used methods by radiologists new ways are emerging to aid
procedures. A tool that can help the physician to report a diagnosis is searching similar cases for
that which is being held with the main function of increased safety to the radiologist in his notes.
For this, a modular architecture for content-based diagnostic image retrieval was developed as a
tool to aid diagnosis. Through the DICOM SR standard used to store radiological findings and
measurements - commonly from CAD - was implemented in a PACS environment a structure
that will provide storage and query contents extracted from diagnostic images. The contents
extraction from images can be done by different processing methods that generate different
parameters for storage and retrieval. The project was developed in partnership with a provider
of solutions for PACS and the Applied Computing Laboratory of the Federal University of Santa
Maria. / Uma das principais formas de diagnóstico utilizadas atualmente corresponde aos exames
realizados por meio da análise de imagens diagnósticas. Devido à demanda crescente por
esse tipo de exame e ao processo manual e repetitivo dos métodos utilizados pelos médicos
radiologistas, começam a surgir novos meios para auxiliar os procedimentos. Uma ferramenta
que pode ajudar o médico na formulação de diagnósticos é a busca de casos semelhantes àquele
que está sendo realizado, tendo como função principal conferir maior segurança ao radiologista
em seus apontamentos. Para tanto, foi desenvolvida uma arquitetura modular para recuperação
de imagens diagnósticas baseada em conteúdo como uma ferramenta de auxílio a diagnósticos.
Através do padrão DICOM SR, utilizado para armazenar achados radiológicos e mensurações
- comumente provenientes de CAD - implementou-se, em um ambiente PACS, uma estrutura
capaz de permitir o armazenamento e consulta de características extraídas das imagens diagnósticas.
A extração de características das imagens pode ocorrer através de diferentes métodos de
processamento que, por sua vez, geram diferentes parâmetros para armazenamento e consulta.
O projeto foi desenvolvido em conjunto com uma empresa fornecedora de soluções de PACS e
com o Laboratório de Computação Aplicada da Universidade Federal de Santa Maria.
|
Page generated in 0.1102 seconds