11 |
Um estudo dos zeros de polinômios ortogonais na reta real e no círculo unitário e outros polinômios relacionados / Not availableAndrea Piranhe da Silva 20 June 2005 (has links)
O principal objetivo deste trabalho 6 estudar o comportamento dos zeros de polinômios ortogonais e similares. Inicialmente, consideramos uma relação entre duas sequências ele polinômios ortogonais, onde as medidas associadas estão relacionadas entre si. Usamos esta relação para estudar as propriedades de monotonicidade dos zeros dos polinômios ortogonais relacionados a uma medida obtida através da generalização da medida associada a uma outra sequência de polinômios ortogonais. Apresentamos, como exemplos, os polinômios ortogonais obtidos a partir da generalização das medidas associadas aos polinômios de Jacobi, Laguerre e Charlier. Em urna segunda etapa, consideramos polinômios gerados por uma certa relação de recorrência de três termos com o objetivo de encontrar limitantes, em termos dos coeficientes da relação de recorrência, para as regiões onde os zeros estão localizados. Os zeros são estudados através do problema de autovalor associado a uma matriz de Hessenberg. Aplicações aos polinômios de Szegó, polinômios para-ortogonais e polinômios com coeficientes complexos não-nulos são consideradas. / The main purpose of this work is to study the behavior of the zeros of orthogonal and similar polynomials. Initially, we consider a relation between two sequences of orthogonal polynomials, where the associated measures are related to each other. We use this relation to study the monotonicity propertios of the zeros of orthogonal polynomials related with a measure obtained through a generalization of the measure associated with other sequence of orthogonal polynomials. As examples, we consider the orthogonal polynomials obtained in this way from the measures associated with the Jacobi, Laguerre and Charlier polynomials. We also consider the zeros of polynomials generated by a certain three term recurrence relation. Here, the main objective is to find bounds, in terms of the coefficients of the recurrence relation, for the regions where the zeros are located. The zeros are explored through an eigenvalue representation associated with a Hessenberg matrix. Applications to Szegõ polynomials, para-orthogonal polynomials anti polynomials with non-zero complex coefficients are considered.
|
12 |
Kombinatorické principy ve školské matematice / Combinatorial principles in school mathematicsBŘEZINOVÁ, Jiřina January 2010 (has links)
The thesis includes delatiled explanation of combinatorial principles used in school mathematics. The single principles are explained in details and practicised. The tasks at the end of the chapter serve readers for testing acquired knoledge.
|
13 |
Applications of recurrence relationChuang, Ching-hui 26 June 2007 (has links)
Sequences often occur in many branches of applied mathematics. Recurrence
relation is a powerful tool to characterize and study sequences. Some
commonly used methods for solving recurrence relations will be investigated.
Many examples with applications in algorithm, combination, algebra, analysis,
probability, etc, will be discussed. Finally, some well-known contest
problems related to recurrence relations will be addressed.
|
14 |
Applications of Generating FunctionsTseng, Chieh-Mei 26 June 2007 (has links)
Generating functions express a sequence as coefficients arising from a power series in variables. They have many applications in combinatorics and probability. In this paper, we will investigate the important properties of four kinds of generating functions in one variables: ordinary generating unction, exponential generating function, probability generating function and moment generating function. Many examples with applications in combinatorics and probability, will be discussed. Finally, some
well-known contest problems related to generating functions will be addressed.
|
15 |
−1 polynômes orthogonauxPelletier, Jonathan 09 1900 (has links)
Ce mémoire est composé de deux articles qui ont pour but commun de lever le voile et de
compléter le schéma d’Askey des q–polynômes orthogonaux dans la limite q = −1. L’objectif
est donc de trouver toutes les familles de polynômes orthogonaux dans la limite −1, de
caractériser ces familles et de les connecter aux autres familles de polynômes orthogonaux
−1 déjà introduites. Dans le premier article, une méthode basée sur la prise de limites dans
les relations de récurrence est présentée. En utilisant cette méthode, plusieurs nouvelles
familles de polynômes orthogonaux sur des intervals continus sont introduites et un schéma
est construit reliant toutes ces familles de polynômes −1. Dans le second article, un ensemble
de polynômes, orthogonaux sur l’agencement de quatre grilles linéaires, nommé les polynômes
de para-Bannai-Ito est introduit. Cette famille de polynômes complète ainsi la liste des parapolynômes. / This master thesis contains two articles with the common goal of unveiling and completing
the Askey scheme of q–orthogonal polynomials in the q = −1 limit. The main objective
is to find and characterize new families of -1 orthogonal polynomials and connect them
to other already known families. In the first article, a method based on applying limits
in recurrence relations is presented. This method is used to find many new families of
polynomials orthogonal with respect to continuous measure. A −1 scheme containing them
is constructed and a compendium containing the properties of all such families is included.
In the second article, a new set of polynomials named the para–Bannai–Ito polynomials is
introduced. This new set, orthogonal on a linear quadri–lattice, completes the list of parapolynomials, but it is also a step toward the finalization of the -1 scheme of polynomials
orthogonal on finite grids.
|
Page generated in 0.109 seconds