• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory and field evaluation of hot mix asphalt with high contents of reclaimed asphalt pavement

Van Winkle, Clinton Isaac 01 December 2014 (has links)
Currently in Iowa, the amount of RAP materials allowed for the surface layer is limited to 15% by weight. The objective of this project was to develop quality standards for inclusion of RAP content higher than 15% in asphalt mixtures. To meet Superpave mix design requirements, it was necessary to fractionate the RAP materials. Based on the extensive sieve-by-sieve analysis of RAP materials, the optimum sieve size to fractionate RAP materials was identified. To determine if the higher percentage of RAP materials than 15% can be used in Iowa's state highway, three test sections with 30.0%, 35.5% and 39.2% of RAP materials were constructed on Highway 6 in Iowa City. The construction of the field test sections was monitored and the cores were obtained to measure field densities of test sections. Field mixtures collected from test sections were compacted in the laboratory in order to test the moisture sensitivity using a Hamburg Wheel Tracking Device. The binder was extracted from the field mixtures with varying amounts of RAP materials and tested to determine the effects of RAP materials on the PG grade of a virgin binder. Field cores were taken from the various mix designs to determine the percent density of each test section. A condition survey of the test sections was then performed to evaluate the short-term performance.
2

Performance Evaluation of Reclaimed Asphalt Pavement in Hot Mix Asphalt Modified with Organosilane

January 2018 (has links)
abstract: Use of Recycled Asphalt Pavement (RAP) in newly designed asphalt mixtures is becoming a common practice. Depending on the percentage of RAP, the stiffness of the hot mix asphalt (HMA) increases by incorporating RAP in mixes. In a climatic area such as the City of Phoenix, RAP properties are expected to be more oxidized and aged compared to other regions across the US. Therefore, there are concerns about the cracking behavior and long-term performance of asphalt mixes with high percentage of RAP. The use of Organosilane (OS) in this study was hypothesized to reduce the additional cracking potential and improve resistance to moisture damage of the asphalt mixtures when using RAP. OS has also the potential to improve the bond between the aggregate and asphalt binder. The use of OS also reduces the mixing and compaction temperatures required for asphalt mixtures, making it similar to a warm mix asphalt (WMA), Six asphalt mixes were prepared with three RAP contents, 0%, 15% and 25%, with and without Organosilane. The mixing temperature was reduced by 10°C and the compaction temperature was reduced by 30°C. Mix designs were performed, and the volumetric properties were compared. The mixture laboratory performance was evaluated for all mixtures by conducting Dynamic Modulus, Flow Number and Tensile Strength Ratio tests. The study findings showed that mixtures achieved better compaction at a reduced temperature of 30°C. Mixtures modified with Organosilane generally exhibited softer behavior at the extreme ends of lower and higher temperatures. The lower moduli are to reduce the potential for cracking. For the Flow Number test, the RAP mixtures with OS passed the minimum required at all traffic levels. Tensile Strength Ratio results increased with the increase in RAP percentage, and further increase was observed when OS was used. The OS reduced the sticking nature of the binder to the molds and equipment, which reduced the efforts in cleaning them. Finally, the future use of RAP by the City of Phoenix would positively contributes to their sustainability aspiration and initiatives. The use of Organosilane may even facilitates higher percentage of RAP usage; it definitely improves the moisture resistance of asphalt mixtures, especially when lower mixing and compaction temperatures are desired or used. / Dissertation/Thesis / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
3

Investigating the rutting and moisture sensitivity of warm mix asphalt with varying contents of recycled asphalt pavement

Ahmed, Taha Ahmed Hussien 01 July 2014 (has links)
To evaluate the performance of Warm Mixture Asphalt (WMA) with varying amounts of recycled asphalt pavement (RAP) in comparison with Hot Mix Asphalt (HMA), comprehensive laboratory and field evaluations were conducted. Mix designs were performed for both WMA with a LEADCAP additive and HMA with large amounts of fractionated RAP materials. Hamburg Wheel Tracking (HWT) test was performed to evaluate the rutting and moisture susceptibility of both HMA and WMA laboratory mixtures. HMA mixtures with up to 50% RAP materials by binder replacement exhibited a better performance than WMA mixtures. However, when RAP materials were increased to 75% both WMA and HMA mixtures showed a superior performance. When a specially designed LEADCAP additive for a mixture with a high RAP content called "RAPCAP" was used, the performance was significantly improved. The existing Asphalt Bond Strength (ABS) test (AASHTO TP91-11) was modified to better evaluate the adhesion bond between asphalt binder and aggregate surface. Based on the modified ABS test results, it was found that the asphalt binder type significantly influenced the adhesion bond. To evaluate the performance of WMA mixtures in the field, test sections were constructed in Iowa, Minnesota and Ohio. The test sections were successfully constructed with less compaction effort than HMA and met the required field densities per each DOT's specification. All HMA and WMA mixtures collected from the test sections passed the HWT and the modified Lottman tests, which indicates high resistance to rutting and moisture damage. The asphalt binders were then extracted and recovered from the field samples then re-graded following AASHTO M320 and AASHTO MP19-10. The recovered asphalt binder grades were found to be higher than the target grades due to the existence of RAP materials in the mixtures except for asphalt binders extracted from WMA mixtures produced using "RAPCAP" additive.
4

Electrochemical assessment and service-life prediction of mechanically stabilized earth walls backfilled with crushed concrete and recycled asphalt pavement

Esfeller, Michael Watts, Jr. 02 June 2009 (has links)
A Mechanically Stabilized Earth (MSE) wall is a vertical grade separation that uses earth reinforcement extending laterally from the wall to take advantage of earth pressure to reduce the required design strength of the wall. MSE wall systems are often prefabricated to reduce construction time, thus improving constructability when compared with conventionally cast-in-place reinforced wall systems. However, there is a lack of knowledge for predicting the service-life of MSE retaining wall systems when recycled backfill materials such as Recycled Asphalt Pavement (RAP) and Crushed Concrete (CC) are used instead of Conventional Fill Material (CFM). The specific knowledge missing is how these recycled materials, when used as backfill in MSE wall systems, affects the corrosion rate of the reinforcing strips. This work addresses this knowledge gap by providing recommendations for MSE wall systems backfilled with CC or RAP, and provides a guide to predict the service-life based on corrosion rate test data obtained from embedding steel and galvanized-steel earth reinforcing strips embedded in MSE wall systems backfilled with CC, RAP, and CFM. Experimental data from samples emulating MSE wall systems with steel and galvanized-steel reinforcing strips embedded in CC and RAP were compared to samples with strips embedded in CFM. The results of the testing provide data and methodologies that may, depending on the environmental exposure conditions, justify the use of RAP and CC for the construction of MSE walls. If these backfill materials are obtained from the construction site, this could provide a significant cost savings during construction.
5

Factors Affecting the Strength of Road Base Stabilized with Cement Slurry or Dry Cement in Conjunction with Full-Depth Reclamation

Dixon, Paul A. 19 April 2011 (has links) (PDF)
Full-depth reclamation (FDR) in conjunction with cement stabilization is an established practice for rehabilitating deteriorating asphalt roads. Conventionally, FDR uses dry cement powder applied with a pneumatic spreader, creating undesirable fugitive cement dust. The cement dust poses a nuisance and, when inhaled, a health threat. Consequently, FDR in conjunction with conventional cement stabilization cannot generally be used in urban areas. To solve the problem of fugitive cement dust, the use of cement slurry, prepared by combining cement powder and water, has been proposed to allow cement stabilization to be utilized in urban areas. However, using cement slurry introduces several factors not associated with using dry cement that may affect road base strength, dry density (DD), and moisture content (MC). The objectives of this research were to 1) identify construction-related factors that influence the strength of road base treated with cement slurry in conjunction with FDR and quantify the effects of these factors and 2) compare the strength of road base treated with cement slurry with that of road base treated with dry cement. To achieve the research objectives, road base taken from an FDR project was subjected to extensive full-factorial laboratory testing. The 7-day unconfined compressive strength (UCS), DD, and MC were measured as dependent variables, while independent variables included cement content; slurry water batching temperature; cement slurry aging temperature; cement slurry aging time; presence of a set-retarding, water-reducing admixture; and aggregate-slurry mixing time. This research suggests that, when road base is stabilized with cement slurry in conjunction with FDR, the slurry water batching temperature; haul time; environmental temperature; and presence of a set-retarding, water-reducing admixture will not significantly affect the strength of CTB, provided that those factors fall within the limits explored in this research and are applied to a road base with similar properties. Cement content and cement-aggregate mixing time are positively correlated with the strength of CTB regardless of cement form. Additionally, using cement slurry will result in slightly lower strength values than using dry cement.
6

Využití asfaltových a betonových recyklátů do pozemních komunikací / The utilization of the asphalt and concrete recycled materials to roads

Žďára, Zbyněk Unknown Date (has links)
This diploma thesis is divided into two parts, theoretical and practical. The is a review om the topic of recycled asphalt pavement and recycled concrete and their possible use in road construction in the theoretical part. The individual chapters deal with describing these materials, their production, and their use in construction layers of pavements. In the next chapters the attention is also paid to their problematic features and foreign experience using these materials in pavements. In the practical part, laboratory samples of recycled asphalt pavement and recycled concrete and their mixtures with cement are tested. The main purpose is to verify the applications of these mixtures of recycled asphalt pavement and recycled concrete in the bonded base layers of the pavement. Another purpose is to compare how these mixtures individual properties with different proportions of both components and different amounts of cement will be different. In the end, the two mixtures with the best properties was selected and the modulus of elasticity was experimentally determined for the possibility of replacing the currently used base layers and the economic evaluation of this design was made.

Page generated in 0.1034 seconds