• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • Tagged with
  • 14
  • 14
  • 9
  • 9
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Local Twisted Trace Formula and Twisted Orthogonality Relations

Li, Chao 05 December 2012 (has links)
Around 1990, Arthur proved a local (ordinary) trace formula for real or p-adic connected reductive groups. The local trace formula is a powerful tool in the local harmonic analysis of reductive groups. One of the aims of this thesis is to establish a local twisted trace formula for certain non-connected reductive groups, which is a twisted version of Arthur’s local trace formula. As an application of the local twisted trace formula, we will prove some twisted orthogonality relations, which are generalizations of Arthur’s results about orthogonality relations for tempered elliptic characters. To establish these relations, we will also give a classification of twisted elliptic representations.
2

A Local Twisted Trace Formula and Twisted Orthogonality Relations

Li, Chao 05 December 2012 (has links)
Around 1990, Arthur proved a local (ordinary) trace formula for real or p-adic connected reductive groups. The local trace formula is a powerful tool in the local harmonic analysis of reductive groups. One of the aims of this thesis is to establish a local twisted trace formula for certain non-connected reductive groups, which is a twisted version of Arthur’s local trace formula. As an application of the local twisted trace formula, we will prove some twisted orthogonality relations, which are generalizations of Arthur’s results about orthogonality relations for tempered elliptic characters. To establish these relations, we will also give a classification of twisted elliptic representations.
3

On Unipotent Supports of Reductive Groups With a Disconnected Centre

Taylor, Jonathan 30 April 2012 (has links) (PDF)
<p>Let $\mathbf{G}$ be a connected reductive algebraic group defined over an algebraic closure of the finite field of prime order $p>0$, which we assume to be good for $\mathbf{G}$. We denote by $F : \mathbf{G} \to \mathbf{G}$ a Frobenius endomorphism of $\mathbf{G}$ and by $G$ the corresponding $\mathbb{F}_q$-rational structure. If $\operatorname{Irr}(G)$ denotes the set of ordinary irreducible characters of $G$ then by work of Lusztig and Geck we have a well defined map $\Phi_{\mathbf{G}} : \operatorname{Irr}(G) \to \{F\text{-stable unipotent conjugacy classes of }\mathbf{G}\}$ where $\Phi_{\mathbf{G}}(\chi)$ is the unipotent support of $\chi$.</p> <p>Lusztig has given a classification of the irreducible characters of $G$ and obtained their degrees. In particular he has shown that for each $\chi \in \operatorname{Irr}(G)$ there exists an integer $n_{\chi}$ such that $n_{\chi}\cdot\chi(1)$ is a monic polynomial in $q$. Given a unipotent class $\mathcal{O}$ of $\mathbf{G}$ with representative $u \in \mathbf{G}$ we may define $A_{\mathbf{G}}(u)$ to be the finite quotient group $C_{\mathbf{G}}(u)/C_{\mathbf{G}}(u)^{\circ}$. If the centre $Z(\mathbf{G})$ is connected and $\mathbf{G}/Z(\mathbf{G})$ is simple then Lusztig and H\'zard have independently shown that for each $F$-stable unipotent class $\mathcal$ of $\mathbf$ there exists $\chi \in \operatorname(G)$ such that $\Phi_(\chi)=\mathcal$ and $n_ = |A_(u)|$, (in particular the map $\Phi_$ is surjective).</p> <p>The main result of this thesis extends this result to the case where $\mathbf$ is any simple algebraic group, (hence removing the assumption that $Z(\mathbf)$ is connected). In particular if $\mathbf$ is simple we show that for each $F$-stable unipotent class $\mathcal$ of $\mathbf$ there exists $\chi \in \operatorname(G)$ such that $\Phi_(\chi) = \mathcal$ and $n_ = |A_(u)^F|$ where $u \in \mathcal^F$ is a well-chosen representative. We then apply this result to prove, (for most simple groups), a conjecture of Kawanaka's on generalised Gelfand--Graev representations (GGGRs). Namely that the GGGRs of $G$ form a $\mathbf{Z}$-basis for the $\mathbf{Z}$-module of all unipotently supported class functions of $G$. Finally we obtain an expression for a certain fourth root of unity associated to GGGRs in the case where $\mathbf{G}$ is a symplectic or special orthogonal group.</p>
4

Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification / Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification

Nguyen, Tuong-Huy 11 December 2015 (has links)
Les variétés de Deligne-Lusztig associées à un élément de Coxeter, dites variétés de Coxeter et notées $YY(dot{c})$, sont des variétés candidates à réaliser l'équivalence dérivée demandée dans la conjecture de Broué. Cette conjecture implique qu'une telle variété doit avoir une cohomologie disjointe et donne également la description de l'algèbre d'endomorphismes associée. Dans le cas des groupes linéaires, nous décrivons la cohomologie des variétés de Coxeter et en déduisons que celles-ci vérifient bien les propriétés impliquées par la conjecture de Broué. Pour ce faire, nous montrons qu'il est possible d'appliquer un résultat de og transitivitéfg permettant de se ramener à des variétés de Coxeter og plus petitesfg et nous utilisons ensuite un résultat établi par Lusztig sur des variétés notées $XX(c)$, obtenues comme des quotients des variétés $YY(dot{c})$ par des groupes finis. Enfin, dans une dernière partie, la description de la cohomologie des variétés de Coxeter nous permet d'obtenir un lien entre la cohomologie de la compactification $overline{YY}(dot{c})$ et celle de la compactification $overline{XX}(c)$. / Deligne-Lusztig varieties associated to Coxeter elements, or more simply Coxeter Varieties denoted by $YY(dot{c})$, are good candidates to realize the derived equivalence needed for the Broué's conjecture. The conjecture implies that the varieties should have disjoint cohomology as well as gives a description of the endomorphisms algebra.For linear groups, we describe the cohomology of the Coxeter varieties and hence show that it agrees with the conditions implied by Broué's conjecture. To do so, we prove it is possible to apply a og transitivityfg result allowing us to restrict to og smallerfg Coxeter varieties. Then, we apply a result obtained by Lusztig on varieties $XX(c)$, which are quotient varieties of $YY(dot{c})$ by some finite groups.In the last part of the thesis, we use the description of the cohomology of Coxeter varieties to connect the cohomology of the compactification $overline{YY}(dot{c})$ and the cohomology of the compactification $overline{XX}(c)$.
5

On G-(phi,nabla)-modules over the Robba ring

Ye, Shuyang 06 August 2019 (has links)
Sei $K$ eine endliche Erweiterung von $QQ_p $ und sei $R$ der Robba-Ring mit Koeffizienten in $K$ sein, die mit einem absoluten Frobenius-Lift $phi$ ausgestattet sind. Sei $F$ der Fixköper von $K$ unter $phi $ und sei $G$ eine verbundene reduktive Gruppe über $F$. Diese Arbeit untersucht $G$-$ (phi,nabla)$-Module über $R$, nämlich $(phi,nabla)$-Module über $R$ mit einer zusätzlicher $G$-Struktur. In Kapitel 3 konstruieren wir einen gefilterten Faserfunktor aus der Darstellungskategorie von $G$ auf endlich-dimensionalen $F$-Vektorräumenbis zur Kategorie von $QQ$-gefilterten Modulen über $R$, und beweisen, dass dieser Funktor spaltbar ist. In Kapitel 4 beweisen wir eine $G$-Version des $p$-adischen lokalen Monodromie-Satzes. In Kapitel 5 beweisen wir eine $G$-Version des logarithmischen lokalen Monodromie-Satzes unter bestimmten Annahmen. Als Anwendung fügen wir jedem $G$-$(phi,nabla)$-Modul eine Weil-Deligne-Darstellung der Weil-Gruppe $W_{kk((t))} $ in $G(K^{nr})$ an, wobei $kk$ der Restklassenkörper von $K$, und $K^{nr}$ die maximal unverzweigte Erweiterung von $K$ ist. / Let $K$ be a finite extension of $QQ_p$ and let $R$ be the Robba ring with coefficients in $K$, equipped with an absolute Frobenius lift $phi$. Let $F$ be the fixed field of $K$ under $phi$ and let $G$ be a connected reductive group over $F$. This thesis investigates $G$-$(phi,nabla)$-modules over $R$, namely $(phi,nabla)$-modules over $R$ with an additional $G$-structure. In Chapter 3, we construct a filtered fiber functor from the category of representations of $G$ on finite-dimensional $F$-vector spaces to the category of $QQ$-filtered modules over $R$, and prove that this functor is splittable. In Chapter 4, we prove a $G$-version of the $p$-adic local monodromy theorem. In Chapter 5, we prove a $G$-version of the logarithmic $p$-adic local monodromy theorem under certain assumptions. As an application, we attach to each $G$-$(phi,nabla)$-module a Weil-Deligne representation of the Weil group $W_{kk((t))}$ into $G(K^{nr})$, where $kk$ is the residue field of $K$, and $K^{nr}$ is the maximal unramified extension of $K$.
6

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.
7

Le théorème de Borel-Weil-Bott

Ascah-Coallier, Isabelle January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
8

Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 / Mod p representations of p-adic reductive groups of rank 1

Abdellatif, Ramla 02 December 2011 (has links)
Soit p un nombre premier. Cette thèse est une contribution à la théorie des représentations modulo p des groupes réductifs p-adiques, jusque là essentiellement centrée sur le groupe linéaire général GL(n) défini sur un corps local non archimédien F complet pour une valuation discrète, de caractéristique résiduelle p et de corps résiduel fini. L’originalité de nos travaux réside notamment dans le fait qu’ils concernent d’autres groupes : nous nous intéressons en effet à la description des classes d’isomorphisme des représentations modulo p de groupes formés des F-points d’un groupe réductif connexe défini, quasi-déployé de rang semi-simple égal à 1 sur F. Une place particulière est accordée au groupe spécial linéaire SL(2) et au groupe unitaire quasi-déployé non ramifié en trois variables U(2,1). Dans ces deux cas, nous montrons que les classes d’isomorphisme des représentations lisses irréductibles admissibles à coefficients dans un corps algébriquement clos de caractéristique p se scindent en deux familles : les représentations non supersingulières et les représentations supersingulières. Nous décrivons complètement les représentations non supersingulières, et montrons que la notion de supersingularité est équivalence à la notion de supercuspidalité apparaissant dans la théorie complexe. Nous donnons aussi une description explicite des représentations supersingulières de SL(2,Q_{p}), ce qui nous permet de définir dans ce cas une correspondance de Langlands locale semi-simple modulo p compatible à celle construite par Breuil pour GL(2). Nous généralisons ensuite les méthodes utilisées jusqu’alors pour obtenir la description des représentations non supercuspidales de G(F) lorsque G est un groupe réductif connexe défini, quasi-déployé, et rang semi-simple égal à 1 sur F. Elle fait apparaître trois familles deux à deux disjointes de représentations : les caractères, les représentations de la série principale et celles de la série spéciale. Nous terminons par une classification des modules à droite simples sur la pro-p-algèbre de Hecke-Iwahori H de SL(2,F). On déduit en particulier que l’application qui envoie une représentation lisse modulo p de SL(2,F) sur son espace de vecteurs invariants sous l’action du pro-p-sous-groupe d'Iwahori induit une bijection entre l’ensemble des classes d’isomorphisme des représentations lisses irréductibles non supersingulières de SL(2,F) et l’ensemble des classes d’isomorphisme des H-modules à droite simples non supersinguliers. Cette bijection s’étend aux objets supersinguliers lorsque l’on suppose que F = Q_{p}, ce qui est de bon augure dans la recherche d’une équivalence de catégories analogue à celle obtenue par Ollivier dans le cadre de la théorie existant pour GL(2, Q_{p}). / Let p be a prime number. This thesis is a contribution to the theory of mod p representations of p-adic reductive groups, which was until now mainly focused on the general linear group GL(n) defined over a non-archimedean local field F complete with respect to a discrete valuation and with finite residue class field of characteristic p. Our work is original as it deals with other groups : we indeed look for a classification of isomorphism classes of modulo p representations of groups formed by the F-points of a connected reductive group defined, quasi-split and of semi-simple rank 1 over F. A special place is devoted to the special linear group SL(2) and to the unramified quasi-split unitary group. In these two cases, we prove that the isomorphism classes of irreducible smooth representations over an algebraically closed field of characteristic p split into two families : supersingular and non-supersingular representations. We give a complete description of non-supersingular representations and prove that supersingularity is equivalent to the notion of supercuspidality that appears in the complex theory. We also make explicit the supersingular representations of SL(2,Q_{p}), what allows us to define a mod p semi-simple local Langlands correspondence that is compatible to the one built by Breuil for GL(2). We then generalize the methods used above to classify the isomorphism classes of non-supercuspidal representations of G(F) for G a connected reductive group which is defined, quasi-split and of semi-simple rank 1 over F. This classification is made up of three pairwise disjoint families : characters, representations of the principal series, and representations of the special series. We finally come back to SL(2) as we give an exhaustive classification of isomorphism classes of simple right modules on the pro-p-Iwahori-Hecke algebra H of SL(2,F). It implies that the map sending a smooth mod p representation of SL(2,F) on its vector space of invariants vectors under the action of the pro-p-Iwahori subgroup induces a bijection between non-supersingular irreducible smooth representations of SL(2,F) and non-supersingular simple right H-modules. This bijection extends to supersingular objects when F = Q_{p}, what is the first step in the search for an equivalence of categories similar to the one built by Ollivier in the setting of mod p representations of GL(2, Q_{p}).
9

Résultats de stabilité en théorie des représentations par des méthodes géométriques / Geometric Methods for stability-type results in representation theory

Pelletier, Maxime 24 November 2017 (has links)
Les coefficients de Kronecker, qui sont indexés par des triplets de partitions et décrivent la décomposition du produit tensoriel de deux représentations irréductibles d'un groupe symétrique en somme directe de telles représentations, ont été introduits par Francis Murnaghan dans les années 1930. Il a notamment remarqué un comportement particulier de ces coefficients : à partir de n'importe quel triplet de partitions, on peut construire une certaine suite de coefficients de Kronecker qui est stationnaire.Afin de généraliser cette propriété, John Stembridge a introduit en 2014 une notion de stabilité pour les triplets de partitions, ainsi qu'une autre notion -- celle de triplet faiblement stable -- dont il a conjecturé qu'elle serait équivalente à la précédente. Cette conjecture a été démontrée peu après par Steven Sam et Andrew Snowden, par des méthodes algébriques.Dans cette thèse, on donne notamment une autre démonstration -- cette fois géométrique -- de cette équivalence grâce à l'interprétation classique des coefficients de Kronecker comme dimensions d'espaces de sections de fibrés en droites sur des variétés de drapeaux. Ces méthodes permettent également de s'intéresser à quelques questions plus précises : la stabilité dont on parle consiste en le fait que certaines suites de coefficients sont stationnaires, et on se demande à partir de quand ces suites deviennent constantes.On applique ensuite ces techniques à d'autres exemples de coefficients de branchement, puis on s'intéresse à un autre problème : celui de produire des triplets stables de partitions. On généralise ainsi un résultat obtenu indépendamment par Laurent Manivel et Ernesto Vallejo sur ce sujet / The Kronecker coefficients, which are indexed by triples of partitions and describe how the tensor product of two irreducible representations of the symmetric group decomposes as a direct sum of such representations, were introduced by Francis Murnaghan in the 1930s. He notably noticed a remarkable behaviour of these coefficients: from any triple of partitions, one can construct a particular sequence of Kronecker coefficients which eventually stabilises.In order to generalise this property, John Stembridge introduced in 2014 a notion of stability for triples of partitions, as well as another notion -- of weakly stable triple -- about which he conjectured that it should be equivalent to the previous one. This conjecture was proven shortly after by Steven Sam and Andrew Snowden, with algebraic methods.In this thesis we especially give another proof -- this time geometric -- of this equivalence, using the classical expression of the Kronecker coefficients as dimensions of spaces of sections of line bundles on flag varieties. With these methods we can also be interested in more specific questions: since the stability which we discuss means that some sequences of coefficients stabilise, one can wonder at which point these sequences become constant.We then apply these techniques to other examples of branching coefficients, and are also interested in another problem: how can we produce stable triples of partitions? We thus generalise a result obtained independently by Laurent Manivel and Ernesto Vallejo on this subject
10

Quotients d'une variété algébrique par un groupe algébrique linéairement réductif et ses sous-groupes maximaux unipotents

Sirois-Miron, Robin 01 1900 (has links)
La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature. / The topological notion of a quotient is fairly simple. Given a topological group $G$ acting on a topological space $X$, one gets the natural application from $X$ to the quotient space $X/G$. In algebraic geometry, unfortunately, it is generally not possible to give the orbit space the structure of an algebraic variety. In the special case of a linearly reductive group acting on a projective variety $X$, the geometric invariant theory allows us to get a morphism of variety from an open $U$ of $X$ to a projective variety $X//G$, which is as close as possible to a quotient map, from a topological point of view. As an example, let $ X\subseteq P^{n}$ be a $k$-projective variety on which acts a linearly reductive group $G$. Suppose further that this action is induced by a linear action of $G$ on $A^{n+1}$ and let $\widehat{X}\subseteq A^{n +1}$ be the affine cone over $X$. By an important theorem of the classical invariants theory, there exist homogeneous invariants $f_{1},..., f_{r}\in C[\widehat{X}]^{G}$ such as $$\C[\widehat{X}]^{G}=\C[f_{1},...,f_{r}].$$ The locus in $X$ of $f_{1},...,f_{r}$ is called the nullcone, noted $N$. Let $Proj(C[\widehat{X}]^{G})$ be the projective spectrum of the invariants ring. The rational map $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induced by the inclusion of $C[\widehat{X}]^{G}$ in $C[\widehat{X}] $ is then surjective, constant on the orbits and separates orbits as much as possible, that is, the fibres contains exactly one closed orbit. A regular map is obtained by removing the nullcone; we then get a regular map $$\pi:X \backslash N\rightarrow Proj(C[f_{1},...,f_{r}])$$ which still satisfy the preceding properties. The Hilbert-Mumford criterion, due to Hilbert and revisited by Mumford nearly half-century later, can be used to describe $N$ without knowing the generators of the invariants ring. Since those are rarely known, this criterion had proved to be quite useful. Despite the important applications of this criterion in classical algebraic geometry, the demonstrations found in the literature are usually given trough the difficult theory of schemes. The aim of this master thesis is therefore, among others, to provide a demonstration of this criterion using classical algebraic geometry and of commutative algebra. The version that we demonstrate is somewhat wider than the original version of Hilbert \cite{hilbert}; a schematic proof of this general version is given in \cite{kempf}. Finally, the proof given here is valid for $C$ but could be generalised to a field $k$ of characteristic zero, not necessarily algebraically closed. In the second part of this thesis, we study the relationship between the preceding constructions and those obtained by including covariants in addition to the invariants. We give a Hilbert-Mumford criterion for covariants (Theorem 6.3.2) which is a theorem from Brion for which we prove a slightly more general version. This theorem, together with a simplified proof of a theorem of Grosshans (Theorem 6.1.7), are the elements of this thesis that can't be found in the literature.

Page generated in 0.4602 seconds