11 |
Le théorème de Borel-Weil-BottAscah-Coallier, Isabelle January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
12 |
Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomialsHeyer, Claudius 09 July 2019 (has links)
Im ersten Teil wird eine neue Konstruktion der parabolischen Induktion für pro-p Iwahori-Heckemoduln gegeben. Dabei taucht eine neue Klasse von Algebren auf, die in gewisser Weise als Interpolation zwischen der pro-p Iwahori-Heckealgebra einer p-adischen reduktiven Gruppe $G$ und derjenigen einer Leviuntergruppe $M$ von $G$ gedacht werden kann. Für diese Algebren wird ein Induktionsfunktor definiert und eine Transitivitätseigenschaft bewiesen. Dies liefert einen neuen Beweis für die Transitivität der parabolischen Induktion für Moduln über der pro-p Iwahori-Heckealgebra. Ferner wird eine Funktion auf einer parabolischen Untergruppe untersucht, die als Werte nur p-Potenzen annimmt. Es wird gezeigt, dass sie eine Funktion auf der (pro-p) Iwahori-Weylgruppe von $M$ definiert, und
dass die so definierte Funktion monoton steigend bzgl. der Bruhat-Ordnung ist und einen Vergleich der Längenfunktionen zwischen der Iwahori-Weylgruppe von $M$ und derjenigen der Iwahori-Weylgruppe von $G$ erlaubt.
Im zweiten Teil wird ein allgemeiner Zerlegungssatz für Polynome über der sphärischen (parahorischen) Heckealgebra einer p-adischen reduktiven Gruppe $G$ bewiesen. Diese Zerlegung findet über einer parabolischen Heckealgebra statt, die die Heckealgebra von $G$ enthält. Für den Beweis des Zerlegungssatzes wird vorausgesetzt, dass die gewählte parabolische Untergruppe in einer nichtstumpfen enthalten ist. Des Weiteren werden die nichtstumpfen parabolischen Untergruppen von $G$ klassifiziert. / The first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of
the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$.
In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
|
13 |
Sur les sous-groupes profinis des groupes algébriques linéaires / On profinite subgroups of algebraic groupsLoisel, Benoit 11 July 2017 (has links)
Dans cette thèse, nous nous intéressons aux sous-groupes profinis et pro-p d'un groupe algébrique linéaire connexe défini sur un corps local. Dans le premier chapitre, on résume brièvement la théorie de Bruhat-Tits et on introduit les notations nécessaires à ce travail. Dans le second chapitre, on trouve des conditions équivalentes à l'existence de sous-groupes compacts maximaux d'un groupe algébrique linéaire G connexe quelconque défini sur un corps local K. Dans le troisième chapitre, on obtient un théorème de conjugaison des sous-groupes pro-p maximaux de G(K) lorsque G est réductif. On décrit ces sous-groupes, de plus en plus précisément, en supposant successivement que G est semi-simple, puis simplement connexe, puis quasi-déployé. Dans le quatrième chapitre, on s'intéresse aux présentations d'un sous-groupe pro-p maximal du groupe des points rationnels d'un groupe algébrique G semi-simple simplement connexe quasi-déployé défini sur un corps local K. Plus spécifiquement, on calcule le nombre minimal de générateurs topologiques d'un sous-groupe pro-p maximal. On obtient une formule linéaire en le rang d'un certain système de racines, qui dépend de la ramification de l'extension minimale L=K déployant G, explicitant ainsi les contributions de la théorie de Lie et de l'arithmétique du corps de base. / In this thesis, we are interested in the profinite and pro-p subgroups of a connected linear algebraic group defined over a local field. In the first chapter, we briefly summarize the Bruhat-Tits theory and introduce the notations necessary for this work. In the second chapter we find conditions equivalent to the existence of maximal compact subgroups of any connected linear algebraic group G defined over a local field K. In the third chapter, we obtain a conjugacy theorem of the maximal pro-p subgroups of G(K) when G is reductive. We describe these subgroups, more and more precisely, assuming successively that G is semi-simple, then simply connected, then quasi-split in addition. In the fourth chapter, we are interested in the pro-p presentations of a maximal pro-p subgroup of the group of rational points of a quasi-split semi-simple algebraic group G defined over a local field K. More specifically, we compute the minimum number of generators of a maximal pro-p subgroup. We obtain a formula which is linear in the rank of a certain root system, which depends on the ramification of the minimal extension L=K which splits G, thus making explicit the contributions of the Lie theory and of the arithmetic of the base field.
|
14 |
Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N) / Cohomology of fiber spaces over the affine building of GL(N)Rajhi, Anis 01 October 2014 (has links)
Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W. / This thesis consists of two parts: the first one gives a generalization of fiber spaces constructed above the Bruhat-Tits tree of the group GL(2) over a p-adic field. More precisely we construct a projective tower of spaces over the 1-skeleton of the Bruhat-Tits building of GL(n) over a p-adic field. We show that any cuspidal representation π of GL(n) embeds with multiplicity 1 in the first cohomology space with compact support of k-th floor of the tower, where k is the conductor of π. In the second part we constructed a space W above the barycentric subdivision of the Bruhat-Tits building of GL(n) over a p-adic field. To study the cohomology spaces with compact support of a proper G-simplicial complex X with a rather special equivariant covering, where G is a totally disconnected locally compact group, we show the existence of a spactrale sequence in the category of smooth representations of G that converges to the cohomology with compact support of X. Based on the latter results, we calculate the cohomology with compact support of W as smooth representation of GL(n), and then we show that the level zero cuspidal types of GL(n) appear with finite multiplicity in the cohomology of some finite simplicial complexes constructed in residual level. As a consequence, we show that the cuspidal representations of level 0 of GL(n) appear in the cohomology of W.
|
Page generated in 0.0407 seconds