• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving the Detection Limit of Planar 2D Photonic Crystal Slab Refractive Index Sensors

Nicholaou, Costa 09 December 2013 (has links)
Two dimensional photonic crystal slabs are studied theoretically and experimentally for the application of refractive index sensing with a focus on increasing both quality factor and sensitivity simultaneously. An overview of simulation and experimental techniques, along with fabrication protocols used is given. Through the use of new wafer architectures which allow for an air substrate, sensitivity is enhanced in some cases by more than a factor of 2 from our previous studies. Combining this with a novel lattice proposed which greatly reduces fabrication tolerances, experimental quality factors above 10,500 are achieved while maintaining an experimental sensitivity of above 800 nm/RIU. The effects of a finite photonic crystal slab are studied through the group velocity of guided mode resonances, with an emphasis on zero-group velocity. Future applications of the designs proposed are discussed.
2

Improving the Detection Limit of Planar 2D Photonic Crystal Slab Refractive Index Sensors

Nicholaou, Costa 09 December 2013 (has links)
Two dimensional photonic crystal slabs are studied theoretically and experimentally for the application of refractive index sensing with a focus on increasing both quality factor and sensitivity simultaneously. An overview of simulation and experimental techniques, along with fabrication protocols used is given. Through the use of new wafer architectures which allow for an air substrate, sensitivity is enhanced in some cases by more than a factor of 2 from our previous studies. Combining this with a novel lattice proposed which greatly reduces fabrication tolerances, experimental quality factors above 10,500 are achieved while maintaining an experimental sensitivity of above 800 nm/RIU. The effects of a finite photonic crystal slab are studied through the group velocity of guided mode resonances, with an emphasis on zero-group velocity. Future applications of the designs proposed are discussed.
3

In-situ cure monitoring of epoxy resin systems

Crosby, Peter January 1998 (has links)
This thesis describes the work carried out at Brunel University to develop novel optical fibre sensors capable of monitoring the cure state of an epoxy/amine resin system. The sensors were of simple construction, consisting of an optical fibre from which the silicone cladding layer had been removed over a short length. This stripped length was embedded into the curing resin system. The sensor was successfully used in two ways: i) as an evanescent absorption sensor to monitor specific absorption bands of the resin system. The absorption of energy from the evanescent wave of the optical fibre by absorbing media allows evanescent absorption spectra to be obtained. Absorption spectra were obtained from sensors embedded in a model curing resin system over narrow wavelength ranges. These wavelength ranges corresponded to positions of known absorptions in the spectra of active components in epoxy/amine systems. By monitoring the change in these absorptions it was possible to obtain information about concentration of the amine hardener functional group throughout cure; ii) as a refractive index sensor capable of monitoring the changes in the refractive index of the resin system during cure. A laser diode was used to launch light into the sensor and the intensity of light emerging from the other end of the fibre was monitored. Changes in the resin system refractive index caused changes in the guiding properties of this the sensor. This resulted in a significant change in the intensity of light recorded by the detector and allowed the cure process to be followed. This sensor was also embedded into a unidirectional pre-preg system and was able to follow the cure of the system. The results from the two sensing methods have been compared with data obtained using FTIR spectroscopy and Abbe refractometry during the resin system cure. A theoretical model of sensor response has been developed and compared with the experimental data obtained. The sensor response has also been compared to predictions made by several models of evanescent sensor systems obtained from the literature. These models have been modified so that they can be applied to a sensor embedded into a curing resin system. An analysis of the correspondence between theory and experiment is presented.
4

Heavy metal ion sensors based on organic microcavity lasers / Capteur d'ions lourds métalliques à base de micro-lasers organiques

Lozenko, Sergii 04 November 2011 (has links)
Le contrôle des polluants environnementaux présents à faible concentration a conduit à la création de détecteurs miniaturisés, à bas coûts et ultra-sensibles, capables d’identifier spécifiquement certaines substances. Dans cette thèse, la méthode de détection explorée repose sur la sensibilité de micro-lasers polymères à une variation d’indice de réfraction. Cette approche a été mise en application pour détecter des métaux lourds (mercure – Hg2+, cadmium – Cd2+ et plomb – Pb2+) dans l’eau potable. En effet les fréquences de résonance de ces micro-cavités sont particulièrement sensibles à l’indice de réfraction du milieu extérieur et se déplacent lorsque celui-ci est modifié. Ce système permet ainsi une détection sans marqueur (« label ») en recouvrant la cavité d’une couche de reconnaissance spécifique de l’espèce recherchée. L’originalité de ce travail repose sur l’utilisation de micro-cavités actives, ou micro-lasers, fabriquées avec des polymères dopés par des colorants lasers. En effet les micro-lasers permettent d’augmenter le rapport signal/bruit et de profiter de pics de résonance étroits, même pour des facteurs de qualité de l’ordre de quelques milliers seulement. Le choix de matériaux organiques comme milieu à gain a été dicté par les nombreux avantages qu’ils offrent. Contrairement aux semi-conducteurs inorganiques, les polymères peuvent être fonctionnalisés de manière relativement aisée et l’utilisation de matériaux poreux devrait augmenter la sensibilité en faisant circuler le fluide à tester à l’intérieur même du résonateur. De plus le protocole de fabrication des micro-lasers organiques reste d’un coût modéré et permet une intégration aisée en micro-fluidique. Deux voies différentes ont été explorées dans cette thèse : détection d’une variation d’indice de réfraction avec des cavités non-fonctionnalisées et détection d’ions lourds avec des cavités fonctionnalisées. Dans le premier cas, la sensibilité obtenue est comparable à ce qui est publié pour des micro-résonateurs passifs. Dans le second cas, nous avons réussi à mettre en évidence la présence d’ions mercure jusqu’à 10-6 M. Quelques approches ont été envisagées pour diminuer encore le seuil de détection dont certaines ont été vérifiées expérimentalement. Ainsi, cette étude propose un prototype de composant sur puce pour la détection d’espèces chimiques ou biologiques. / Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury – Hg2+, cadmium – Cd2+ and lead – Pb2+) is studied. The resonance frequencies of the microcavity are highly sensitive to the refractive indices of the resonator surrounding: the resonances shift by a small amount when the surface refractive index changes, resulting from the interaction of the mode evanescent field with the surrounding medium. This permits label-free detection by coating the resonator with a suitable recognition species. The originality of this work lies in the utilization of active microcavities, or microlasers, created of the dye-doped polymers. Active microcavities offer an enhanced signal/noise ratio as compared to the passive ones and very narrow resonance peaks even at moderate quality factors (Q &#8805- 6000). The choice of polymers as an active medium is connected with a number of advantages they offer: as opposite to semiconductors, polymers can be easily functionalized, integrated in microfluidic circuits and are cheaper in processing. Moreover, the use of porous polymer matrices may allow accumulation of analyte ions inside the microcavity and thus enhance the sensitivity. Two possible applications of microlasers are investigated in the thesis: refractive index variation sensing with non-functionalized cavities and heavy metal ion detection with functionalized cavities. In the first case, the sensitivity values have been obtained, comparable with the reported in literature for planar passive microresonators. In the second case, the experimental proofs of specific detection of mercury ions in liquid are presented. The ways of sensitivity improvement are discussed and verified and a foundation is layed for the creation of integrated Lab-on-Chip microfluidic biochemical detector.
5

Heavy metal ion sensors based on organic microcavity lasers

Lozenko, Sergii 04 November 2011 (has links) (PDF)
Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury - Hg2+, cadmium - Cd2+ and lead - Pb2+) is studied. The resonance frequencies of the microcavity are highly sensitive to the refractive indices of the resonator surrounding: the resonances shift by a small amount when the surface refractive index changes, resulting from the interaction of the mode evanescent field with the surrounding medium. This permits label-free detection by coating the resonator with a suitable recognition species. The originality of this work lies in the utilization of active microcavities, or microlasers, created of the dye-doped polymers. Active microcavities offer an enhanced signal/noise ratio as compared to the passive ones and very narrow resonance peaks even at moderate quality factors (Q &#8805- 6000). The choice of polymers as an active medium is connected with a number of advantages they offer: as opposite to semiconductors, polymers can be easily functionalized, integrated in microfluidic circuits and are cheaper in processing. Moreover, the use of porous polymer matrices may allow accumulation of analyte ions inside the microcavity and thus enhance the sensitivity. Two possible applications of microlasers are investigated in the thesis: refractive index variation sensing with non-functionalized cavities and heavy metal ion detection with functionalized cavities. In the first case, the sensitivity values have been obtained, comparable with the reported in literature for planar passive microresonators. In the second case, the experimental proofs of specific detection of mercury ions in liquid are presented. The ways of sensitivity improvement are discussed and verified and a foundation is layed for the creation of integrated Lab-on-Chip microfluidic biochemical detector.
6

Entwurf und experimentelle Untersuchung eines faseroptischen Oberflächenplasmonenresonanz-Sensors

Schuster, Tobias 23 March 2017 (has links) (PDF)
In der medizinischen Diagnostik, Bioverfahrenstechnik und Umwelttechnik besteht ein steigender Bedarf an kompakten Analysegeräten für die schnelle Vor-Ort-Detektion spezifischer biochemischer Substanzen. Im Rahmen der Arbeit wurde daher ein neuartiger faseroptischer Sensor entwickelt, der in der Lage ist kleinste Brechzahländerungen, z.B. durch molekulare Bindungsprozesse, zu detektieren. Die hohe Empfindlichkeit an der vergoldeten Spitze der Sensorfaser beruht auf der Oberflächenplasmonenresonanz (SPR) einer einzelnen Mantelmode, die durch ein langperiodisches Fasergitter (LPG) ermöglicht wird. Die Übertragungsfunktion des Sensors wurde unter Verwendung eines Schichtwellenleitermodells schnell und präzise modelliert. Es konnte gezeigt werden, dass in einem wässrigen Umgebungsmedium die höchste Empfindlichkeit im Spektralbereich um 660 nm unter Annahme einer rund 35~nm dicken und 2~mm langen Goldbeschichtung erreicht wird. Weiterhin wurde nachgewiesen, dass mit einer intermediale Schicht aus Cadmiumsulfid die SPR der Mantelmode in einen höheren Spektralbereich verschoben und damit die Empfindlichkeit deutlich verbessert werden kann. Um eine geringe Polarisationsabhängigkeit des Sensors sicherzustellen, wurde ein nasschemisches Abscheidungsverfahren für die allseitige Goldbeschichtung der Sensorfaser entwickelt. Die spezifischen optischen Eigenschaften dieser Abscheidungen wurden mit Hilfe von LPGs untersucht, die durch eine spezielle UV-Belichtung hergestellt wurden. Die Experimente ergaben, dass die komplexe Permittivität nasschemischer Abscheidungen mit Schichtdicken oberhalb von 50~nm mit aufgedampften Goldschichten vergleichbar ist. Die Verluste der adressierten Mantelmoden wurden mit einer äquivalenten Sensoranordnung aus zwei identischen LPG untersucht. Dabei konnte ein Skalierfaktor abgeleitet werden, der die effiziente Berechnung der Mantelmodendämpfung erlaubt. Es wurde nachgewiesen, dass die Brechzahlauflösung etablierter volumenoptischer SPR-Sensoren mit einer einfachen Transmissionsmessung an einer geeigneten Wellenlänge erreicht werden kann. Die äußerst kompakte Sensorfläche des faseroptischen Sensors ermöglicht darüber hinaus die Untersuchung deutlich kleinerer Probenvolumina ohne ein zusätzliches mikrofluidisches System zu benötigen. Es wurde gezeigt, dass sekundäre Brechzahländerungen aufgrund von Temperaturschwankungen oder unspezifische Ablagerungen durch eine differentielle Auswertung zweier identischer Sensoren kompensiert werden können. Die verbleibende Querempfindlichkeit wird durch die Polarisationsabhängigkeit der Sensoren bestimmt. Die geringste Querempfindlichkeit konnte daher mit einer homogenen nasschemischen abgeschiedenen Sensorfläche nachgewiesen werden. / Compact analysis devices which facilitate the rapid detection of specific biochemical substances are in increasing demand in the fields of point-of-care medical diagnostics, bioprocess engineering and environmental engineering. The aim of this work was therefore to design a novel fiber-optic sensor able to detect small refractive index changes such as those caused by molecular binding processes. The high level of sensitivity at the gold-plated tip of the sensor fiber stems from the surface plasmon resonance (SPR) of a single cladding mode, which is the result of a long-period fiber grating (LPG). The transfer function of the sensor was calculated quickly and accurately using a slab waveguide model. It was observed that the highest level of sensitivity in an aqueous ambient medium is achieved at a wavelength of 660 nm assuming a gold coating of 35 nm in thickness and 2 mm in length. Furthermore, it was demonstrated that an intermedial cadmium sulfide layer shifts the SPR of the cladding mode towards higher wavelengths, thus leading to significantly enhanced sensitivity. An electroless plating process for the omnidirectional deposition of gold on the sensor fiber was developed in order to minimize the sensor\'s dependency on polarization. The specific optical properties of the gold layer deposited were investigated with the aid of LPGs fabricated using a special UV exposure method. The experiments showed the complex permittivity of electroless platings with a thickness of over 50 nm to be comparable with that of evaporated gold layers. The losses of the addressed cladding modes were investigated using an equivalent sensor setup consisting of two identical LPGs. This facilitated the determination of a scaling factor enabling the effcient calculation of cladding mode attenuation. It was demonstrated that it is possible to obtain the refractive index resolution of established volume optical SPR sensors with the aid of simple transmission measurements at a specific wavelength. Moreover, the extremely compact sensing area of the fiber-optic sensor enables the investigation of smaller sample volumes without the need for an additional microfluidic system. Secondary refractive index changes caused by temperature fluctuations or unspecific binding events can be compensated for by means of the differential interrogation of two identical fiber-optic sensors. The residual cross sensitivity is determined by the polarisation dependency of the sensor. The lowest cross sensitivity was therefore demonstrated in combination with a homogeneous electroless plated sensor surface.
7

Entwurf und experimentelle Untersuchung eines faseroptischen Oberflächenplasmonenresonanz-Sensors

Schuster, Tobias 13 April 2016 (has links)
In der medizinischen Diagnostik, Bioverfahrenstechnik und Umwelttechnik besteht ein steigender Bedarf an kompakten Analysegeräten für die schnelle Vor-Ort-Detektion spezifischer biochemischer Substanzen. Im Rahmen der Arbeit wurde daher ein neuartiger faseroptischer Sensor entwickelt, der in der Lage ist kleinste Brechzahländerungen, z.B. durch molekulare Bindungsprozesse, zu detektieren. Die hohe Empfindlichkeit an der vergoldeten Spitze der Sensorfaser beruht auf der Oberflächenplasmonenresonanz (SPR) einer einzelnen Mantelmode, die durch ein langperiodisches Fasergitter (LPG) ermöglicht wird. Die Übertragungsfunktion des Sensors wurde unter Verwendung eines Schichtwellenleitermodells schnell und präzise modelliert. Es konnte gezeigt werden, dass in einem wässrigen Umgebungsmedium die höchste Empfindlichkeit im Spektralbereich um 660 nm unter Annahme einer rund 35~nm dicken und 2~mm langen Goldbeschichtung erreicht wird. Weiterhin wurde nachgewiesen, dass mit einer intermediale Schicht aus Cadmiumsulfid die SPR der Mantelmode in einen höheren Spektralbereich verschoben und damit die Empfindlichkeit deutlich verbessert werden kann. Um eine geringe Polarisationsabhängigkeit des Sensors sicherzustellen, wurde ein nasschemisches Abscheidungsverfahren für die allseitige Goldbeschichtung der Sensorfaser entwickelt. Die spezifischen optischen Eigenschaften dieser Abscheidungen wurden mit Hilfe von LPGs untersucht, die durch eine spezielle UV-Belichtung hergestellt wurden. Die Experimente ergaben, dass die komplexe Permittivität nasschemischer Abscheidungen mit Schichtdicken oberhalb von 50~nm mit aufgedampften Goldschichten vergleichbar ist. Die Verluste der adressierten Mantelmoden wurden mit einer äquivalenten Sensoranordnung aus zwei identischen LPG untersucht. Dabei konnte ein Skalierfaktor abgeleitet werden, der die effiziente Berechnung der Mantelmodendämpfung erlaubt. Es wurde nachgewiesen, dass die Brechzahlauflösung etablierter volumenoptischer SPR-Sensoren mit einer einfachen Transmissionsmessung an einer geeigneten Wellenlänge erreicht werden kann. Die äußerst kompakte Sensorfläche des faseroptischen Sensors ermöglicht darüber hinaus die Untersuchung deutlich kleinerer Probenvolumina ohne ein zusätzliches mikrofluidisches System zu benötigen. Es wurde gezeigt, dass sekundäre Brechzahländerungen aufgrund von Temperaturschwankungen oder unspezifische Ablagerungen durch eine differentielle Auswertung zweier identischer Sensoren kompensiert werden können. Die verbleibende Querempfindlichkeit wird durch die Polarisationsabhängigkeit der Sensoren bestimmt. Die geringste Querempfindlichkeit konnte daher mit einer homogenen nasschemischen abgeschiedenen Sensorfläche nachgewiesen werden. / Compact analysis devices which facilitate the rapid detection of specific biochemical substances are in increasing demand in the fields of point-of-care medical diagnostics, bioprocess engineering and environmental engineering. The aim of this work was therefore to design a novel fiber-optic sensor able to detect small refractive index changes such as those caused by molecular binding processes. The high level of sensitivity at the gold-plated tip of the sensor fiber stems from the surface plasmon resonance (SPR) of a single cladding mode, which is the result of a long-period fiber grating (LPG). The transfer function of the sensor was calculated quickly and accurately using a slab waveguide model. It was observed that the highest level of sensitivity in an aqueous ambient medium is achieved at a wavelength of 660 nm assuming a gold coating of 35 nm in thickness and 2 mm in length. Furthermore, it was demonstrated that an intermedial cadmium sulfide layer shifts the SPR of the cladding mode towards higher wavelengths, thus leading to significantly enhanced sensitivity. An electroless plating process for the omnidirectional deposition of gold on the sensor fiber was developed in order to minimize the sensor\'s dependency on polarization. The specific optical properties of the gold layer deposited were investigated with the aid of LPGs fabricated using a special UV exposure method. The experiments showed the complex permittivity of electroless platings with a thickness of over 50 nm to be comparable with that of evaporated gold layers. The losses of the addressed cladding modes were investigated using an equivalent sensor setup consisting of two identical LPGs. This facilitated the determination of a scaling factor enabling the effcient calculation of cladding mode attenuation. It was demonstrated that it is possible to obtain the refractive index resolution of established volume optical SPR sensors with the aid of simple transmission measurements at a specific wavelength. Moreover, the extremely compact sensing area of the fiber-optic sensor enables the investigation of smaller sample volumes without the need for an additional microfluidic system. Secondary refractive index changes caused by temperature fluctuations or unspecific binding events can be compensated for by means of the differential interrogation of two identical fiber-optic sensors. The residual cross sensitivity is determined by the polarisation dependency of the sensor. The lowest cross sensitivity was therefore demonstrated in combination with a homogeneous electroless plated sensor surface.
8

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 15 September 2015 (has links) (PDF)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.
9

Rolled-up Microtubular Cavities Towards Three-Dimensional Optical Confinement for Optofluidic Microsystems

Bolaños Quiñones, Vladimir Andres 12 August 2015 (has links)
This work is devoted to investigate light confinement in rolled-up microtubular cavities and their optofluidic applications. The microcavities are fabricated by a roll-up mechanism based on releasing pre-strained silicon-oxide nanomembranes. By defining the shape and thickness of the nanomembranes, the geometrical tube structure is well controlled. Micro-photoluminescence spectroscopy at room temperature is employed to study the optical modes and their dependence on the structural characteristics of the microtubes. Finite-difference-time-domain simulations are performed to elucidate the experimental results. In addition, a theoretical model (based on a wave description) is applied to describe the optical modes in the tubular microcavities, supporting quantitatively and qualitatively the experimental findings. Precise spectral tuning of the optical modes is achieved by two post-fabrication methods. One method employs conformal coating of the tube wall with Al2O3 monolayers by atomic-layer-deposition, which permits a mode tuning over a wide spectral range (larger than one free-spectral-range). An average mode tuning to longer wavelengths of 0.11nm/ Al2O3-monolayer is obtained. The other method consists in asymmetric material deposition onto the tube surface. Besides the possibility of mode tuning, this method permits to detect small shape deformations (at the nanometer scale) of an optical microcavity. Controlled confinement of resonant light is demonstrated by using an asymmetric cone-like microtube, which is fabricated by unevenly rolling-up circular-shaped nanomembranes. Localized three-dimensional optical modes are obtained due to an axial confinement mechanism that is defined by the variation of the tube radius and wall windings along the tube axis. Optofluidic functions of the rolled-up microtubes are explored by immersing the tubes or filling their core with a liquid medium. Refractive index sensing of liquids is demonstrated by correlating spectral shift of the optical modes when a liquid interacts with the resonant light of the microtube. In addition, a novel sensing methodology is proposed by monitoring axial mode spacing changes. Lab-on-a-chip methods are employed to fabricate an optofluidic chip device, allowing a high degree of liquid handling. A maximum sensitivity of 880 nm/refractive-index-unit is achieved. The developed optofluidic sensors show high potential for lab-on-a-chip applications, such as real-time bio/chemical analytic systems.

Page generated in 0.1007 seconds