Spelling suggestions: "subject:"rejeitado"" "subject:"rejeitadas""
1 |
Estratégias para o desenvolvimento de modelos de credit score com inferência de rejeitados. / Strategies for the development of credit score with the inference rejectedAlves, Mauro Correia 03 September 2008 (has links)
Modelos de credit score são usualmente desenvolvidos somente com informações dos proponentes aceitos. Neste trabalho foram consideradas estratégias que podem ser utilizadas para o desenvolvimento de modelos de credit score com a inclusão das informações dos rejeitados. Foram avaliadas as seguintes técnicas de inferência de rejeitados: classificação dos rejeitados como clientes Maus, parcelamento, dados aumentados, uso de informações de mercado e ainda a estratégia de aceitar proponentes rejeitados para acompanhamento e desenvolvimento de novos modelos de risco de crédito. Para a avaliação e comparação dos modelos foram utilizadas as medidas de desempenho: estatística de Kolmogorov-Smirnov (KS), área sob a curva de Lorentz (ROC), área entre as curvas de distribuição acumulada dos escores (AEC), diferença entre as taxas de inadimplência nos intervalos do escore definidos pelos decis e coeficiente de Gini. Concluiu-se que dentre as quatro primeiras técnicas avaliadas, o uso de informaçõoes de mercado foi a que apresentou melhor desempenho. Quanto à estratégia de aceitar proponentes rejeitados, observou-se que há um ganho em relação ao modelo ajustado só com base nos proponentes aceitos. / Credit scoring models are usually built using only information of accepted applicants. This text considered strategies that can be used to develop credit score models with inclusion of the information of the rejects. We evaluated the techniques of reject inference: classification of rejected customers as bad, parceling, augmentation, use of market information and the strategy of accepting rejected proponents for monitoring and developing new models of credit risk. For the evaluation and comparison between models were used performance measures: Kolmogorov-Smirnov statistics (KS), the area under the Lorentz Curve (ROC), area between cumulative distribution curves of the scores (AEC), difference among the delinquency rate in the score buckets based on deciles (DTI) and the Gini coefficient. We concluded that among the first four techniques evaluated, the fourth (use of market information) had the best performance. For the strategy to accept rejected bidders, it was observed that there is a gain in relation to the model that uses only information of accepted applicants.
|
2 |
Estratégias para o desenvolvimento de modelos de credit score com inferência de rejeitados. / Strategies for the development of credit score with the inference rejectedMauro Correia Alves 03 September 2008 (has links)
Modelos de credit score são usualmente desenvolvidos somente com informações dos proponentes aceitos. Neste trabalho foram consideradas estratégias que podem ser utilizadas para o desenvolvimento de modelos de credit score com a inclusão das informações dos rejeitados. Foram avaliadas as seguintes técnicas de inferência de rejeitados: classificação dos rejeitados como clientes Maus, parcelamento, dados aumentados, uso de informações de mercado e ainda a estratégia de aceitar proponentes rejeitados para acompanhamento e desenvolvimento de novos modelos de risco de crédito. Para a avaliação e comparação dos modelos foram utilizadas as medidas de desempenho: estatística de Kolmogorov-Smirnov (KS), área sob a curva de Lorentz (ROC), área entre as curvas de distribuição acumulada dos escores (AEC), diferença entre as taxas de inadimplência nos intervalos do escore definidos pelos decis e coeficiente de Gini. Concluiu-se que dentre as quatro primeiras técnicas avaliadas, o uso de informaçõoes de mercado foi a que apresentou melhor desempenho. Quanto à estratégia de aceitar proponentes rejeitados, observou-se que há um ganho em relação ao modelo ajustado só com base nos proponentes aceitos. / Credit scoring models are usually built using only information of accepted applicants. This text considered strategies that can be used to develop credit score models with inclusion of the information of the rejects. We evaluated the techniques of reject inference: classification of rejected customers as bad, parceling, augmentation, use of market information and the strategy of accepting rejected proponents for monitoring and developing new models of credit risk. For the evaluation and comparison between models were used performance measures: Kolmogorov-Smirnov statistics (KS), the area under the Lorentz Curve (ROC), area between cumulative distribution curves of the scores (AEC), difference among the delinquency rate in the score buckets based on deciles (DTI) and the Gini coefficient. We concluded that among the first four techniques evaluated, the fourth (use of market information) had the best performance. For the strategy to accept rejected bidders, it was observed that there is a gain in relation to the model that uses only information of accepted applicants.
|
3 |
Capacidade preditiva de Modelos Credit Scoring em inferência dos rejeitadosPrazeres Filho, Jurandir 28 March 2014 (has links)
Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6034.pdf: 941825 bytes, checksum: 6d06b85571d5cab86cee2ed1c1d699da (MD5)
Previous issue date: 2014-03-28 / Universidade Federal de Sao Carlos / Granting credit to an applicant is a decision made in a context of uncertainty. At the moment the lender decides to grant a loan or credit sale there is always the possibility of loss, and, if it is associated with a probability, the decision to grant or not credit will be more reliable. In order to aid the decision to accept or not the request for applicants are used the credit scoring models, which estimate the probability of loss associated with granting credit. But one of the problems involving these models is that only information about the applicants accepted are used, which causes a sampling bias, because the rejected applicants are discarded. With the aim to solve this problem it can use rejected inference, which are considered individuals who have had credit application rejected. However, only considering rejected inference and one method of modeling data, usually, is not sufficient to get satisfactory predictive measures, and thus, were used combined results of three methods, logistic regression, analysis probit and decision tree. The purpose of this combination were to increase the predictive perfomance and the metrics used were sensitivity, specificity , positive predictive value, negative predictive value and accuracy. Through the application in data sets we concluded that the use of the combined results increased the predictive performance, specially regarding to sensitivity. / A concessão de crédito e uma decisão a ser tomada num contexto de incertezas. No momento em que o credor decide conceder um empréstimo, realizar um financiamento ou venda a prazo sempre existe a possibilidade de perda, e, se for atribuída uma probabilidade a esta perda, a decisão de conceder ou não credito será mais confiável. Com o objetivo de auxiliar a tomada de decisão em relação ao pedido de credito dos solicitantes são utilizados os modelos credit scoring, os quais estimam a probabilidade de perda associada a concessão de credito. Um dos problemas envolvendo estes modelos e que somente informações a respeito dos proponentes aceitos são utilizadas, o que causa um viés amostral, pois, os solicitantes recusados são descartados no processo de modelagem. Com intuito de solucionar este problema tem-se a inferência dos rejeitados, em que são considerados os indívíduos que tiveram pedido de credito rejeitado. No entanto, considerar a inferência dos rejeitados e o uso de somente um método de modelagem de dados, muitas vezes, não e suficiente para que se tenha medidas preditivas satisfatórias. Desta forma, foram utilizados resultados combinados de três metodologias, regressão logística, probit e árvore de decisão/classificação concomitantemente a utilização dos métodos de inferência dos rejeitados que incluem o uso de variável latente, reclassificação, parcelamento e ponderação. O objetivo dessa combinação foi aumentar a capacidade preditiva e as métricas utilizadas foram a sensibilidade, especificidade, valor preditivo positivo, valor preditivo negativo e acurácia. Através da aplicação em conjuntos de dados concluiu-se que a utilização dos resultados combinados aumentou a capacidade preditiva, principalmente, em relação a sensibilidade.
|
4 |
Combinação de classificadores para inferência dos rejeitadosRocha, Ricardo Ferreira da 16 March 2012 (has links)
Made available in DSpace on 2016-06-02T20:06:06Z (GMT). No. of bitstreams: 1
4300.pdf: 2695135 bytes, checksum: c7742258a75f77aa35ccb54abc3439fe (MD5)
Previous issue date: 2012-03-16 / Financiadora de Estudos e Projetos / In credit scoring problems, the interest is to associate to an element who request some kind of credit, a probability of default. However, traditional models uses samples biased because the data obtained from the tenderers has only clients who won a approval of a request for previous credit. In order to reduce the bias sample of these models, we use strategies to extract information about individuals rejected to be able to infer a response, good or bad payer. This is what we call the reject inference. With the use of these strategies, we also use the bagging technique (bootstrap aggregating), which consist in generate models based in some bootstrap samples of the training data in order to get a new predictor, when these models is combined. In this work we will discuss about some of the combination methods in the literature, especially the method of combination by logistic regression, although little used but with interesting results.We'll also discuss some strategies relating to reject inference. Analyses are given through a simulation study, in data sets generated and real data sets of public domain. / Em problemas de credit scoring, o interesse é associar a um elemento solicitante de algum tipo de crédito, uma probabilidade de inadimplência. No entanto, os modelos tradicionais utilizam amostras viesadas, pois constam apenas de dados obtidos dos proponentes que conseguiram a aprovação de uma solicitação de crédito anterior. Com o intuito de reduzir o vício amostral desses modelos, utilizamos estratégias para extrair informações acerca dos indivíduos rejeitados para que nele seja inferida uma resposta do tipo bom/- mau pagador. Isto é o que chamamos de inferência dos rejeitados. Juntamente com o uso dessas estratégias utilizamos a técnica bagging (bootstrap aggregating ), que é baseada na construção de diversos modelos a partir de réplicas bootstrap dos dados de treinamento, de modo que, quando combinados, gera um novo preditor. Nesse trabalho discutiremos sobre alguns dos métodos de combinação presentes na literatura, em especial o método de combinação via regressão logística, que é ainda pouco utilizado, mas com resultados interessantes. Discutiremos também as principais estratégias referentes à inferência dos rejeitados. As análises se dão por meio de um estudo simulação, em conjuntos de dados gerados e em conjuntos de dados reais de domínio público.
|
Page generated in 0.0507 seconds